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Abstract

Traditional processor scheduling mechanisms in operat-
ing systems arefairly rigid, often supportingonly onefixed
scheduling policy, or, a most, a few “scheduling classes’
whose implementations are closely tied together inthe OS
kernel. This paper presents CPU inheritance scheduling, a
novel processor scheduling framework in which arbitrary
threads can act as schedulers for other threads. Widdly dif-
ferent scheduling policies can be implemented under the
framework, and many different policies can coexist in a
single system, providing much greater scheduling flexibil-
ity. Modular, hierarchical control can be provided over the
processor utilization of arbitrary administrative domains,
such as processes, jobs, users, and groups, and the CPU
resources consumed can be accounted for and attributed
accurately. Applications, as well as the OS, can imple-
ment customized local scheduling policies; the framework
ensures that all the different policies work together logi-
cally and predictably. Asaside effect, the framework aso
cleanly addresses priority inversion by providing a gener-
alized formof priority inheritancethat automatically works
within and among diverse scheduling policies. CPU inher-
itance scheduling extends naturally to multiprocessors, and
supportsprocessor management techni ques such as proces-
sor affinity[29] and scheduler activations[3]. We show that
thisflexibility can be provided with acceptable overhead in
typical environments, depending on factors such as context
switch speed and frequency.

1 Introduction

Traditional operating systems control the sharing of the
machine’'s CPU resources among threads using a fixed
scheduling scheme, typicaly based on priorities. Some-
times a few variants on the basic policy are provided,

This research was supported in part by the Defense Advanced Re-
search Projects Agency, monitored by the Department of the Army, under
contract number DABT63-94—-C-0058. The opinions and conclusions
containedin thisdocument arethose of the authorsand should not beinter-
preted as representing official views or policies of the U.S. Government.

such as support for fixed-priority threads[17], or sev-
eral “scheduling classes’ to which threads with different
purposes can be assigned (e.g., red-time, interactive, or
background)[25]. However, even these variants are gener-
ally hard-coded intothe system i mplementation and cannot
easily be adapted to the needs of individual applications.

In this paper we develop a novel processor schedul-
ing framework based on a generdized notion of priority
inheritance. In this framework, known as CPU inheri-
tance scheduling, arbitrary threads can act as schedulersfor
other threads by temporarily donatingtheir CPU timeto se-
lected threads while waiting on events of interest such as
clock/timer interrupts. The receiving threads can further
donate their CPU time to other threads, and so on, form-
ing alogical hierarchy of schedulers asillustrated in Fig-
urel. A scheduler thread can be notified when thethread to
which it donated its CPU time no longer needsit (e.g., be-
cause thetarget thread has blocked), so that the CPU can be
reassigned to another target. The basic thread dispatching
mechanism necessary to implement this framework does
not have any notion of thread priority, CPU usage, or clocks
and timers; all of these functions, when needed, are imple-
mented by threads acting as schedulers.

Under thisframework, arbitrary scheduling policiescan
be implemented by ordinary threads cooperating with each
other through well-defined interfaces that may cross pro-
tection boundaries. For example, a fixed-priority multi-
processor scheduling policy can be implemented by main-
taining, among a group of scheduler threads (one for each
available CPU), a prioritized queue of “client” threads to
be scheduled; each scheduler thread successively picks a
thread to run and donates its CPU time to the selected tar-
get thread while waiting for an interesting event such as
guantum expiration (e.g., a clock interrupt). See Figure 2
for an illustration. If the selected thread blocks, its sched-
uler thread is notified and the CPU isreassigned. On the
other hand, if a different event causes the scheduler thread
towake up, therunningthread is preempted and the CPU is
given back to the scheduler immediately. Other scheduling
policies, such as timesharing[23], fixed-priority[12, 17],
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Figure 1. Example scheduling hierarchy. The dark circles represent
threads acting as schedulers, while the light circles represent “ ordinary”
threads.

rate monotonic[22], fair share[9, 16, 19], and lottery/stride
scheduling[30, 31, 32], can be implemented in the same
way.

This scheduling framework has the following features:

o |t supports multiple arbitrary scheduling policies on
the same or different processors.

¢ Since scheduler threads may run either in the OS ker-
nel or in user mode, applications can easily extend or
replace the scheduling policies built into the OS.

o |t provideshierarchical control over the processor re-
source usage of different logica or administrative do-
mains in a system, such as users, groups, individua
processes, and threads within a process.

o CPU usage accounting can be provided to various de-
grees of accuracy depending on the resources oneis
willing to invest.

o Priority inversion is addressed naturally in the pres-
ence of resource contention, without the need for ex-
plicit priority inheritance/ceiling protocols.

o CPU useisattributed properly evenin the presence of
priority inheritance.
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Figure 2: Example fixed-priority scheduler

o Theframework naturally extends to multiprocessors.
o Processor affinity scheduling is supported.
e Scheduler activations can be implemented easily.

Based on a prototype implementation in a user-level
threads package, we demonstrate that this framework be-
haves identically to traditional multi-class schedulers in
equivalent configurations, and that it provides modular re-
source control, load insulation, and priority inversion pro-
tection automatically across multiple scheduling policies.
The additional scheduling overhead caused by thisframe-
work is negligible in the test environment, and we show
that it should also be acceptable in many kernd environ-
ments as well despite greater context switch costs.

The rest of this paper is organized as follows. Sec-
tion 2 describes motivation and related work, Section 3
presents the CPU inheritance scheduling algorithm in de-
tail, and Section 4 shows how traditional scheduling algo-
rithms can be implemented on this framework. Section 5
demonstrates the behavior and performance properties of
our framework through experimental results, and Section 6
concludes with a short reflective summary.

2 Motivation

Traditiona operating systems divide a machine's CPU
resources among threads using afixed scheduling scheme,
typically based on priorities. However, the requirements
imposed on an operating system’s scheduler often vary
from application to application. For example, for interac-
tive applications, response time is usually the most criti-
ca factor—i.e., how quickly the program responds to the
user’'scommands. For batch jobs, throughput isof primary



importance but latency isaminor issue. Hard real-time ap-
plications require meeting application-specific deadlines,
while for soft real-time applications, missing a deadline
is unfortunate but not catastrophic. There is no single
scheduling scheme that works well for al applications.

Over the years, the importance of providing a variety
of scheduling policies on a single machine has waxed and
waned, following hardware and application trends. In the
early years of computing, use of the entire machine was
limited to a single user thread; this evolved into multipro-
grammed machines in which a single scheduling policy
managed batch jobs effectively. The advent of timesharing
on machines till used for batch jobs caused a need for two
scheduling policies. Astimesharing gradually gave way to
single-user workstations and PCs, a single scheduling pol-
icy was again adequate for awhile.

Supporting multiple scheduling policiesisagain becom-
ing important, not because of multiple users on a system,
but because of the variety of concurrent uses to which mod-
ern systems are put. Multimedia drives the need for soft
real-time scheduling policies on genera purpose worksta:
tions. Untrusted executable content (e.g., Java applets) re-
quires secure control of resource usage while aso provid-
ing soft real-time guarantees. The hard rea-timedomainis
also making inroadsonto genera purpose machines aspro-
cessors and instruments supporting embedded applications
become networked, and some customers (e.g., themilitary)
need the ability to shift processing power dynamicaly to
the problem of the moment. All of these additiona poli-
cies must still work alongside traditional interactive and
batch scheduling: though multimediaand video conferenc-
ing may be the current rage, this does not mean that users
no longer care about getting good i nteractiveresponse from
the word processors, spreadsheets, and other applications
that they still rely on daily. Therefore, as the diversity of
applications increases, operating systems need to support
multiple coexisting processor scheduling policies, in order
to meet individual applications needs as well asto utilize
the system’s processor resources more efficiently.

2.1 Reated Work

One simple approach to providing real-time support in
systemswith traditional timesharing schedulers, which has
been adopted by many commonly-used systems such as
Unix, Mach[1, 4], and Windows NT[25], and has even be-
come part of the PosIX standard[17], is support for fixed-
priority threads. Although these systems generally still use
conventional priority-based timesharing schedulers, they
allow real-time applicationsto disable the normal dynamic
priority adjustments on threads specifically designated as
“real-time threads,” so that those threads aways run at a
programmer-defined priority. By carefully assigning pri-
orities to the real-time threads in the system and ensuring
that all non-real-time threads execute at lower priority, it

is possible to obtain the correct behavior for some appli-
cations. However, this approach has serious, well-known
limitations; in many cases, entirely different non-priority-
based scheduling policies are needed[18].

Even in normal interactive and batch-mode computing,
traditional priority-based scheduling agorithms are show-
ing their age. For example, these agorithms do not pro-
vide a clean way to encapsulate a set of processes/threads
asasingle unit to isolate and control their processor usage
relative to therest of the system. This shortcoming opens
the system to various denial-of-service attacks, the most
well-known being the creation of alarge number of threads
which overwhelm processor resources and crowd out other
activity. These vulnerabilities generally don't cause seri-
ous problems for machines only used by one person, or
when the users of the system fall into one administrative
domain and can “complainto the boss’ if someoneisabus-
ing the system. However, as distributed and mobile com-
puting becomes more preval ent and administrative bound-
aries become increasingly blurred, thisform of system se-
curity is becoming more important. Thisis especialy true
when completely unknown, untrusted code is downl oaded
and run in a “secure’ environment such as that provided
by Java[13] or OmniWare[2]. Schedulers have been de-
signed that address this problem by providing flexible hi-
erarchical control over CPU usage at different administra-
tiveboundarieq[5, 14, 15, 30, 31, 32]. However, itisnot yet
clear how these algorithms will address other needs, such
as those of hard real-time applications; certainly it seems
unlikely that a single “holy grail” of scheduling policies
will be found.

With the growing diversity of application needs and
scheduling policies, it is increasingly desirable for an op-
erating system to support multiple independent policies.
On multiprocessor systems, one simple but limited way of
doing thisisto run a different scheduling policy on each
processor. A more general approach is to allow multi-
ple “scheduling classes’ to run on a single processor, with
a specific scheduling policy associated with each class.
The classes have a strictly ordered priority relationship to
each other, so the highest-priority class gets al the CPU
time it wants, the next class gets any CPU time left un-
used by thefirst class, etc. Although this approach shows
promise, one drawback is that since the schedulers for the
different classes generally don’t communicate or cooperate
with each other closely, only the highest-priority schedul-
ing class on a given processor can make any assumptions
about how much CPU time it will have to dispense to the
threads under its control.

Additionally, most existing multi-policy scheduling
mechanisms till require every scheduling policy to be
implemented in the kernel and to be closely tied with other
kernel mechanisms such as threads, context switching,
clocks, and timers. The only existing system we know
of that allows different scheduling policies to be imple-



mented in separate, unprivileged protection domains is
the Aegis Exokernel[8]. However, the Aegis scheduling
mechanism was not described at length and does not
address important issues such as timing, CPU usage
accounting, and multiprocessor scheduling. Both Aegis's
scheduling mechanism and our framework are based
on the use of a “directed yield” primitive which alows
application-level threads to schedule each other; this core
concept originaly comes from coroutineg[6], in which
directed yield isthe only way thread switchingisdone. We
believe our scheduling framework could be implemented
in an Exokernel environment through the use of suitable
kernel primitives, application-level support code, and
standardized inter-process scheduling protocols.

Finaly, most existing systems still suffer from vari-
ous priority inversion problems. Priority inversion oc-
curs when a high-priority thread requesting a service has
to wait arbitrarily long for a low-priority thread to fin-
ish being serviced. This problem can be addressed in
priority-based scheduling algorithms by supporting prior-
ity inheritance[7, 26], wherein the thread holding up the
service inherits the priority of the highest priority thread
waiting for service. In some cases this approach can be
adapted to other scheduling policies, such as with ticket
transfer in lottery scheduling[31]. However, the problem
of resolving priority inversion between threads of different
scheduling classes using policieswith different and incom-
parable notionsof “priority” has not been addressed so far.

3 CPU Inheritance Scheduling

In our scheduling model, as in traditiona systems, a
threadisavirtua CPU whose purposeisto executeinstruc-
tions. A thread may or may not havearea CPU assignedto
it a any given instant; a running thread may be preempted
and its CPU reassigned to another thread at any time. (For
the purposes of thisframework, it is not important whether
thesethreads are kernel -managed or user-managed threads,
or whether they run in supervisor or user mode.)

In traditional systems, threads are generally scheduled
by some lower-level entity, such as a scheduler in the OS
kernel or auser-level threads package. In contrast, the ba-
sic idea of CPU inheritance scheduling is that threads are
scheduled by other threads. Any thread that hasareal CPU
available to it a a given instant can donate its CPU tem-
porarily to another specific thread instead of using the CPU
itself. This operation is similar to priority inheritance in
conventional systems, except that it is done explicitly by
thedonating thread, and no notion of “priority” isinvolved,
only a direct transfer of the CPU from one thread to an-
other; hence the name “CPU inheritance.”

A scheduler thread is a thread that spends most of its
timedonating its CPU resourcesto client threads; theclient
threads thus inherit some portion of the scheduler thread's
CPU resources, and treat that portion astheir virtual CPU.

Client threadscan inturnact as scheduler threads, distribut-
ing their CPU time among their own clients, and so on,
forming a scheduling hierarchy.

The only threads in the system that inherently have ac-
tual CPU time available to them are the set of root sched-
uler threads; other threads can only run if CPU timeisdo-
nated to them. There isone root scheduler thread for each
real CPU in the system; each CPU is permanently dedi-
cated to supplying CPU time to its associated root sched-
uler thread. The actions of the root scheduler thread on a
given CPU determine the base-level scheduling policy for
that CPU.

3.1 TheDispatcher

Even though al high-level scheduling decisions are per-
formed by threads, a small low-level mechanism is till
needed to implement primitive thread management func-
tions. We call this low-level mechanism the dispatcher to
distinguishit clearly from high-level schedulers.

The role of the dispatcher is to to implement thread
blocking, unblocking, and CPU donation. The dispatcher
fields events and directs them to threads waiting on those
events, without actually making any real scheduling de-
cisions. Events can be synchronous, such as an explicit
wake-up of a sleeping thread by a running thread, or asyn-
chronous, such an externa interrupt (e.g., 1/0 or timer).
The dispatcher itsalf is not a thread; it merely runsin the
context of whatever thread owns the CPU at the time an
event of interest occurs.

The dispatcher inherently contains no notion of thread
priorities, CPU usage, or even clocks and timers. In aker-
nel supporting CPU inheritance scheduling, the dispatcher
is the only scheduling component that must be in the ker-
nel; al other scheduling code could in theory run in user-
mode threads outside of the kernel (although this “purist”
approach may beimpractical for performance reasons).

3.2 Requesting CPU Time

Because no thread (except a root scheduler thread) can
ever run unless some other thread donates CPU timeto it,
anewly-created or newly-woken thread must request CPU
time from some scheduler before it can run. Each thread
has an associated schedul er which has primary responsibil-
ity for providing CPU time to the thread. When the thread
becomes ready, the dispatcher notifies the thread's sched-
uler that the thread needs CPU time. The exact form such
a notification takes is not important; in our implementa-
tion, notificationsare simply | PC messages sent by thedis-
patcher to Mach-like message ports.

When athread wakes up, thenotificationit produces may
in turn wake up a scheduler thread waiting to receive such
messages on its port. Waking up that scheduler thread will



cause another notification to be sent to its schedul er, which
may wake up still another thread, and so on. Thus, wak-
ing up an arbitrary thread can cause a chain of wakeups to
propagate back through the scheduler hierarchy. Eventu-
ally, this propagation may wake up a scheduler thread that
iscurrently being supplied with CPU timebut isdonatingit
to some other thread. Inthat case, thethread currently run-
ning on that CPU is preempted and control is given back
to the woken scheduler thread immediately; the scheduler
can then make a decision to re-run the preempted client,
switch to the newly-woken client, or even run some other
thread. Alternatively, the propagation of wake-up events
may terminate a some point, for example because a noti-
fied scheduler is aready awake (not waiting for messages)
but has been preempted. In that case, the dispatcher knows
that thewake-up eventisirrelevant for scheduling purposes
at the moment, so the currently running thread is resumed
immediately.

3.3 Rdinquishing the CPU

At any time, arunning thread may block to wait for one
or more events to occur, such as 1/0 completion or timer
expiration. When a thread blocks, the dispatcher returns
control of the CPU to the scheduler thread that provided
it to the running thread. That scheduler may then choose
another thread to run, or it may relinquish the CPU to its
scheduler, and so on up the line until some scheduler finds
work to do.

3.4 Voluntary Donation

Instead of simply blocking, a running thread can volun-
tarily donateits CPU to another thread whilewaiting on an
event of interest; thisisdonein situationswhere priority in-
heritancewouldtraditionally be used. For example, whena
thread attemptsto obtain alock that isalready held, it may
donate its CPU time to the thread holding the lock; simi-
larly, when athread makes an RPC to a server thread, the
client thread may donate its CPU time to the server for the
duration of the request. When the event of interest occurs,
the donation ends and the CPU isgiven back to theoriginal
thread. In our implementation of thisframework, the basic
synchronization and IPC primitives automatically invoke
the dispatcher to perform voluntary donation appropriately
when thethread bl ocks; however, voluntary donation could
also be doneoptionally or through explicit dispatcher cals.

It is possible for a single thread to inherit CPU time
from more than one source at a given time: for example,
athread holding alock may inherit CPU time from several
threads waiting on that lock in addition to its own sched-
uler. In this case, the effect is that the thread has the op-
portunity to run at any time any of itsdonor threads would
have been able to run. A thread only “uses’ one CPU
source at atime; however, if its current CPU source runs
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Figure 3: CPU donation chain

out (e.g., due to quantum expiration), the dispatcher will
automatically send scheduling request notifications on be-
half of all thethreads depending on (donatingto) to thepre-
empted thread, effectively switching the thread automati-
cally to another available CPU source. Onepotentia worry
is that a thread consuming CPU time from many sources
will cause an “avaanche effect” every timeit is preempted
or woken as the dispatcher fires off several scheduling re-
quests, each of which may cause more scheduling requests
asintermediate-level schedulers are woken up. Webelieve
that in practice it should be uncommon for a thread to in-
herit from more than one or two other threads at once, so
this should not be a mgjor problem; however, we have not
yet examined thisissuein detail.

3.5 Theschedul e operation

The call ascheduler thread makesto donate CPU timeto
aclient thread is simply a special form of voluntary CPU
donation, in which the thread to donate to and the event to
wait for can be specified explicitly. In our implementation,
the schedul e operation takes as parameters a thread to
donate to, a port on which to wait for messages from other
client threads, and a wakeup sensitivity parameter indicat-
ing in what situationsthe scheduler should be woken. The
operationdonatesthe CPU to the specified target thread and
puts the schedul er thread to sleep on the specified port; if a
message arrives on that port, such as a notification that an-
other client thread has been woken or amessage indicating
that atimer has expired, thentheschedul e operationter-
minates and control is returned to the scheduler thread.

In addition, the schedul e operation may be inter-
rupted before a message arrives, depending on the behav-
ior of the thread to which the CPU is being donated and
the value of thewakeup sensitivity parameter. The wakeup
sensitivity level actsasahinttothedispatcher alowingitto
avoid waking up the scheduler thread except when neces-
sary; itisonly an optimizationand isnot in theory required
for the system to work. Our system supportsthe following
three sensitivity levels:

o WAKEUP_ON BLOCK: If thetarget of theschedul e
operation blocks without further donating the CPU,



then the schedul e operation terminates and con-
trol isreturned to the scheduler immediately. For ex-
ample, in Figure 3, if scheduler thread S; has do-
nated the CPU to thread 7% using this wakeup sen-
sitivity setting, but 7% blocks and can no longer
use the CPU, then S; will receive control again.
WAKEUP_ONLBLOCK is the “most sensitive” setting,
and is typicaly used when the scheduler has other
client threads waiting to run.

o WAKEUP_ONLSW TCH: If the client thread using the
CPU (T3) blocks, control is not immediately returned
to its scheduler (S;): the dispatcher behaves instead
asif S; itself blocked, and passes control on back to
its scheduler, Sy. If 75 is subsequently woken up,
then when S, again providesthe CPU to Sy, thedis-
patcher passes control directly back to 7, without ac-
tualy running S;. However, if a different client of
S1, such as T4, wakes up and sends a notification to
S1's message port, then S1’s schedul e operation
will be interrupted. This sensitivity level istypicaly
used when a scheduler has only one thread to run at
the moment and doesn’t care when that thread blocks
or unblocks, but it still wantsto switch between differ-
ent client threads manually: for example, the sched-
uler may need to start and stop timers when switching
between client threads.

e WAKEUP_ONLCONFLI CT: The scheduler is only
awakened if a second client thread wakes up while
the scheduler is aready donating CPU to a client
(e.g., if 71 wakes up while 7% is running). If 75
blocks, the scheduler blocks too; then, if any single
client of scheduler S; is subsequently woken, such
as T, the dispatcher passes control directly to the
woken client thread without waking up the scheduler.
At this weakest sensitivity level, the dispatcher is
alowed to switch among client threads fredy; the
scheduler only acts as a “conflict resolver,” making
decisions when two client threads are runnable at the
same time,

4 |Implementing High-level Schedulers

This section describes how the basic CPU inheritance
mechanism can be used to implement high-level schedul-
ing policies and related features such as CPU usage ac-
counting, processor affinity, and scheduler activations.

4.1 Single-CPU Schedulers

Figure 4 shows asimplified code fragment from a basic
non-prioritized FIFO scheduler in our system. The sched-
uler keeps a queue of client threads waiting for CPU time,
and successively runseach oneusingtheschedul e oper-
ation while waiting for messages to arrive on itsport (e.g.,

void fifo_scheduling_|l oop()

cur _thread = NULL;
nore_nsgs = 1;
for (5;) {
if (nore_nsgs) {
nore_nsgs = nsg_rcv(&fifo_pset,
} else {

&nsg) ;

/* Select the thread to run next. */
if ((cur_thread == 0) &&
I queue_enpty(&ifo_runq))
cur_thread = g_renove(&fifo_rung);

/* Sel ect wakeup sensitivity level. */
cond = qg_is_enmpty(&ifo_runqg) ?
WAKEUP_ON_CONFLI CT : WAKEUP_ON_BLCCK;

/* Schedul e and wait for messages. */
if (cur_thread != NULL)

nmore_nsgs = schedul e(fifo_pset, &nsg,
cur _thread, cond);
el se
nmore_nsgs = nsg_rcv(fifo_pset, &rsg);

}

/* Process the received nmessage. */
switch (nsg.request_code) {
case M5G_SCHED_ REQUEST:
/* Aclient thread wants to run. */
g_enter(&ifo_rung, nsg.thread_id);
br eak;
case MSG_SCHED_BLOCKED:
/* Last thread gave up the CPU. */
cur_thread = 0;
br eak;

Figure 4: Example single-processor FIFO scheduler.

notifications from newly-woken client threads). When
there are no client threads waiting to be run, the sched-
uler usestheordinary non-donatingnsg.r cv operationin-
stead of the schedul e operation in order to relinquish
the CPU while waiting for messages. If there is only
one client thread in the scheduler’s queue, the scheduler
uses the weaker WAKEUP_ONLCONFLI CT sensitivity level
when running it to indicate that the dispatcher may switch
among client threads arbitrarily as long as only one client
thread attemptsto use the CPU at atime.

4.2 Timekeeping and Preemption

The simple FIFO scheduler above can be converted to a
round-robin scheduler by introducing some form of clock
or timer. For example, if the scheduler istheroot schedul er
on aCPU, then the scheduler might be directly responsible
for servicing clock interrupts. Alternatively, the scheduler
may rely on a separate “timer thread” to notify it when a



periodic timer expires. In any case, atimer expiration or
clock interrupt is indicated to the scheduler by a message
being sent to the scheduler’s port. This message causes
the scheduler to break out of itsschedul e operation and
preempt the CPU from whatever client thread was using
it. The scheduler can then move that client to the tail of
the ready queue for its priority and give control to the next
client thread at the same priority.

4.3 Multiprocessor Support

Since the example scheduler above only containsa sin-
gle scheduler thread, it can only schedule a single client
thread a once. Therefore, athough it can be run on a
multiprocessor system, it cannot take advantage of muilti-
ple processors simultaneoudly. For example, aseparatein-
stance of the FIFO scheduler could berun astheroot sched-
uler on each processor; aclient thread assigned to a given
scheduler is effectively bound to its scheduler’s CPU. Al-
though in some situations this arrangement can be useful,
e.g., when each processor isto be dedicated to a particular
purpose, in most cases it is not what is needed.

In order for a scheduler to provide “real” multiproces-
sor scheduling to its clients, where different client threads
can be dynamically assigned to different processors on de-
mand, the scheduler itself must be multi-threaded. Assume
for now that the scheduler knows how many processors are
available, and can bind threadsto processors. (Thisistriv-
ia if thescheduler isrun astheroot schedul er on someor al
processors; wewill show later how thisrequirement can be
met for non-root schedulers.) The scheduler creates asepa-
ratethread bound to each processor; each of these schedul er
threads then selects and runs client threads on that proces-
sor. The scheduler threads cooperate with each other us-
ing shared variables, e.g., shared run queues in the case of
amultiprocessor FIFO scheduler.

Since ascheduler’sclient threads are supposed to be un-
aware that they are being scheduled on multiple proces-
sors, the scheduler exports only a single port representing
the scheduler as awholeto al of itsclients. When aclient
thread wakes up and sends a notification to the scheduler
port, the dispatcher arbitrarily wakes up one of the sched-
uler threads waiting on that port. A good policy is for the
dispatcher to wake up the schedul er thread associated with
the CPU on which the wakeup is being done; this allows
the scheduler to be invoked on thelocal processor without
interfering with other processors unnecessarily. If the wo-
ken scheduler thread discoversthat the newly woken client
should berun on adifferent processor (e.g., becauseitisal-
ready running a high-priority client but another scheduler
thread isrunning alow-priority client), it can interrupt the
other scheduler thread’sschedul e operation by sending
it amessage or “signal”; this corresponds to sending inter-
processor interruptsin traditional systems.

4.3.1 Processor Affinity

Scheduling policies that take processor affinity into
consideration[27, 28, 29], can be implemented by treat-
ing each scheduler thread as a processor and attempting
to schedule a client thread from the same schedul er thread
that previously donated CPU timeto that client thread. Of
course, thiswill only work if the scheduler threads them-
selves are consistently run on the same processor. Any pro-
cessor affinity support in one scheduling layer will only
work well if al thelayersbetween it and theroot schedul er
also consider processor affinity; amechanism to ensurethis
is described in the next section.

4.3.2 Scheduler Activations

In the common case, client threads*communicate”’ with
their schedulersimplicitly through notifications sent by the
dispatcher on behalf of the client threads. However, there
isnothing to prevent client threads from explicitly commu-
nicating with their schedul ers through some additional in-
terface. One particularly useful explicit interface is sched-
uler activationg 3], which allows clients to determine ini-
tially and later track the number of actual processorsavail-
able to them. Clients can then create or destroy threads as
appropriate in order to make use of all available proces-
sorswithout creating superfluousthreadsthat compete with
each other uselessly on a single processor.

Since scheduler threads are notified by the dispatcher
when a client thread bl ocks and temporarily cannot usethe
CPU (e.g., because the thread iswaiting for an 1/0 request
or apage fault to be serviced), the scheduler can notify the
client in such a situation and give the client an opportunity
to creste a new thread to make use of the CPU while the
original thread is blocked. For example, a client can cre-
ate apool of “dormant” threads, or “activations,” whichthe
scheduler knows about but normally never runs. If aCPU
becomes available, e.g., because of another client thread
blocking, the scheduler “activates’ one of these dormant
threads on the CPU vacated by the blocked client thread.
Later, when the bl ocked thread eventually unblocksand re-
guests CPU time again, the scheduler preempts one of the
currently running client threads and notifies the client that
it should make one of the active threads dormant again.

Scheduler activationswere originally devised to provide
better support for application-specific thread packages run-
ninginasingleuser modeprocess. Inan OSkernd that im-
plements CPU inheritance scheduling, extending a sched-
uler to providethissupport should be quite straightforward.
However, in a multiprocessor system based on CPU in-
heritance scheduling, scheduler activations are also useful
in stacking of first-class schedulers. As mentioned previ-
oudly, multiprocessor schedulers need to know the num-
ber of processors available in order to use the processors
efficiently. As long as a base-level scheduler (eg., the
root scheduler on aset of CPUs) supportsscheduler activa
tions, ahigher-level multiprocessor scheduler running as a



client of the base-level scheduler can use the scheduler ac-
tivationsinterface to track the number of processors avail-
able and schedule its clients effectively. (Simple single-
threaded schedulers that only make use of one CPU at a
time don’t need scheduler activations and can be stacked
on top of any scheduler.)

44 Timing

Most scheduling algorithms require a measurable no-
tion of timein order to implement preemptive scheduling.
For most schedulers, a periodic interrupt is sufficient, al-
though some real-time schedulers may need finer-grained
timers whose periods can be changed at each quantum.
With CPU inheritance scheduling, the precise nature of the
timing mechanism is not important to the general frame-
work; al that is needed is some way for a schedul er thread
to be woken up after some amount of time has elapsed. In
our implementation, schedulers can register timeouts with
acentral clock interrupt handler; when atimeout occurs, a
message is sent to the appropriate scheduler’s port, waking
up the scheduler. The dispatcher automatically preempts
the running thread if necessary and passes control to the
scheduler so that it can account for the elapsed timeand po-
tentially switch to a different client thread.

44.1 CPU Usage Accounting

Besidessimply deciding which thread to run next, sched-
ulers often must account for CPU resources consumed.
CPU accounting information is used for a variety of pur-
poses, such as reporting usage statistics to the user on de-
mand, modifying scheduling policy based on CPU usage
(e.g., dynamically adjusting thread priority), or billing a
customer for CPU time consumed for a particular job. As
with scheduling policies, there are many possible CPU
accounting mechanisms, each with different cost/benefit
tradeoffs. The CPU inheritance scheduling framework al-
lowsavariety of accounting policiesto beimplemented by
scheduler threads.

There are two well-known approaches to CPU usage ac-
counting: statistical and time stamp-based[4]. With sta-
tistical accounting, the scheduler wakes up on every clock
tick, checks the currently running thread, and charges the
entire time quantum to that thread. This method is quite
efficient, since the scheduler generaly wakes up on ev-
ery clock tick anyway; however, it provides limited accu-
racy. A variation that provides better accuracy at dightly
higher cost isto samplethe current thread at random points
between clock tickg[21]. Alternatively, with time stamp-
based accounting, the scheduler reads the current time at
every context switch and charges the appropriatethread for
the time since the last context switch. This method pro-
videsextremely high accuracy, but alsoimposesahigh cost
due to lengthened context switch times, especially on sys-
tems on which reading the current time is expensive.

In the root scheduler on a processor, these methods can
be applied directly. To implement statistical accounting,
the scheduler ssmply checkswhat thread it ran last upon be-
ing woken up by the arrival of atimeout message. To im-
plement time stamp-based accounting, the scheduler reads
the current time each time it schedules a different client
thread. The scheduler must use the WAKEUP_ON_BL OCK
sensitivity level in order to ensurethat it can check thetime
at each thread switch and to ensure that idle time is not
charged to any thread.

For schedulers stacked on top of other schedulers, CPU
accounting becomes a little more complicated because the
CPU time supplied to such a scheduler isalready “virtual”
and cannot be measured accurately by a wall-clock timer.
For example, in Figure 3, if scheduler S; measures 75's
CPU usage using awall-clock timer, thenit may mistakenly
charge against 75 time actually used by the high-priority
thread 7;, which S; has no knowledge of because it is
scheduled by the root scheduler Sy. In many cases, this
inaccuracy caused by stacked schedulers may be ignored
in practice on the assumption that high-priority threadsand
schedulerswill consume relatively little CPU time; thisas-
sumption is similar to the one made in many existing ker-
nelsthat hardwareinterrupt handlers consumelittleenough
CPU time that they may be ignored for accounting pur-
poses. In situationsin which this assumption is not vaid
and accurate CPU accounting is needed for stacked sched-
ulers, virtual CPU timeinformation provided by base-level
schedulers can be used instead of wall-clock time, at the
cost of additional communication between schedulers. For
example, in Figure 3, a each clock tick (for statistical ac-
counting) or each context switch (for time stamp-based ac-
counting), scheduler ;S; could request its own virtual CPU
time usage from S, instead of checking the current wall-
clock time. It then uses this virtua time information to
maintain usage statisticsfor itsclients, 77 and 7.

442 Effectsof CPU Donation on Timing

Asmentioned earlier, CPU donation can occur implicitly
as well as explicitly, e.g., to avoid priority inversion when
a high-priority thread attempts to lock a resource aready
held by a low-priority thread. For example, in Figure 5,
scheduler Sy has donated the CPU to high-priority thread
Ty in preference over low-priority thread 7. However, it
turns out that 73 is holding aresource needed by 75, s0 1%
implicitly donatesits CPU time to 73 . Since thisdonation
merely extendsthescheduling chain, .Sy isunawarethat the
switch occurred, and it continuesto charge CPU time used
to 7} instead of 77 whichisthethread that isactually using
the CPU.

Whileit may seem non-intuitive at first, in practice this
is often precisely the desired behavior; it stems from the
basic rule that with privilege comes responsibility. While
Ty is donating CPU to 71, 17 is effectively doing work
on behalf of 75, even if 71 is unaware that it is receiving
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Figure5: Implicit CPU donation from high-priority thread Ty to low-
priority thread T to avoid priority inversion during a resource conflict.

CPU time from 7;. Since 7,'s share of the CPU is being
used to perform this work, the CPU time consumed must
also be charged to 75, even if the work is actually being
done by another thread. Demonstrated another way, charg-
ing 17 rather than 7 would allow the accounting system
to be subverted. For example, if high-priority CPU timeis
“expensive’ and low-priority CPU timeis*cheap,” then 7;
could colludewith 7} to use high-priority CPU time while
being charged the low-priority “rate” simply by arranging
for 73 to do all the actual work while 7y, blocks on alock
perpetualy held by 7} . Thisability to charge the “ proper”
thread for CPU usage even in the presence of priority in-
heritance is unnatural and difficult to implement in tradi-
tional systems, and thereforeis generaly not implemented
by them; on the other hand, thisfeaturefallsout of the CPU
inheritance framework automatically.

45 Threadswith Multiple Scheduling Policies

Sometimesiit is desirable for a single thread to be asso-
ciated with two or more scheduling policies at once. For
example, a thread may normaly run in a rea-time rate-
monotonic scheduling class, however, if thethread’s quan-
tum expires beforeitswork isdone, it may be desirablefor
thethread to drop down to the normal timesharing classin-
stead of simply stopping dead initstracks.

Support for multiple scheduling policies per thread can
be achieved in our framework even under a dispatcher that
supportsonly a single scheduler association per thread, by
cregting one or more additional “dummy” threads which
perpetualy donate their CPU timeto the“primary” thread.
Each of these threads can have a different scheduler asso-
ciation, and the dispatcher automatically ensures that the
primary thread always uses the highest priority scheduler
available, as described in Section 3.4. In situations in
which this solutionisnot acceptable due to performance or
memory overhead, the dispatcher could easily be extended
to adlow multiple schedulers to be associated with a sin-
gle thread, so that when such a thread becomes runnable
the dispatcher automatically notifies dl of the appropriate
schedulers.

Althoughit may at first seem inefficient to notify two or
more schedulers when a single thread awakes, in practice
many of these notifications never actualy need to be deliv-
ered. For example, if areal-time/timesharing thread wakes

up, finishesall of itswork and goes back to deep again be-
fore its real-time scheduling quantum is expired (presum-
ably the common case), then the notification posted to the
low-priority timesharing scheduler at wakeup time will be
canceled (removed from the queue) when thethread goesto
dleep again, so the timesharing schedul er effectively never
sees it.

5 Analysisand Experimental Results

We have created a prototype implementation of this
scheduling framework and devised a number of tests to
evaluate its flexibility, performance, and practicality.

5.1 Test Environment

In order to provide a clean, easily controllable environ-
ment, we implemented an initial prototype of this frame-
work inauser-level threads package. The threads package
supports common abstractions such as mutexes, condition
variables, and message ports for inter-thread communica
tion and synchronization. The package implements sepa-
ratethread stackswithset j np/l ongj np, and thevirtua
CPU timer alarm signal (SI GVTALRM is used to provide
preemption and simul ate clock interrupts. We used the vir-
tual CPU timer instead of the wall-clock timer in order to
minimize distortion of the results due to other activity in
the host Unix system; in a“real” user-level threads pack-
age based on this scheduling framework, the normal wall-
clock timer would probably be used instead. Our prototype
allows threads to wait on only one event at a time; how-
ever, thereis nothing about the framework that makesitin-
compatible with thread models in which threads can wait
on multiple events a once[25].

Although implemented in user space, our prototypeis
designed to reflect the structure and execution environment
of an actual OS kernel runningin privileged mode. For ex-
ample, thedispatcher itself ispassive, nonpreemptiblecode
executed in the context of the currently running thread, an
environment similar to that of BSD and other traditional
kernels. The dispatcher iscleanly isolated from the rest of
the system, and supports scheduling hierarchies of unlim-
ited depth and complexity. Our prototype schedulers are
also isolated from each other and from their clients; the
various components communi cate with each other through
message-based protocol sthat could easily be adapted to op-
erate across protection domains using 1PC.

Except where otherwise noted, all measurements were
taken on a 100MHz Pentium PC with 32 megabytes of
RAM, running FreeBSD 2.1.5.

5.2 Scheduler Configuration

The following experiments are based on scheduling hi-
erarchy shown in Figure 6, which is designed to reflect
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Figure 6: Multilevel scheduling hierarchy used for tests.

the activity present in a genera-purpose environment. In
this environment, the root scheduler is a nonpreemptive
fixed-priority scheduler with a first-come-first-served pol-
icy among threads of same priority. This scheduler arbi-
trates between three scheduling classes. a real-time rate-
monotonicscheduler at the highest priority, alottery sched-
uler providing a timesharing class, and a simple round-
robin scheduler for background jobs. On top of the lottery
scheduler managing the timesharing class, an application-
specific third-level scheduler manages two threads using
lottery scheduling (e.g., a Web browser managing Java ap-
plet threads). Finally, a second application-specific sched-
uler in the timesharing class schedules two cooperating
threads using nonpreemptive FIFO scheduling.

5.3 Scheduling Behavior

The purpose of our first experiment is simply to ver-
ify that our framework works as expected, producing the
same scheduling behavior as traditiond single- and multi-
class schedulers do in equivaent configurations. Figure 7
shows the scheduling behavior of the threads simulated in
our scheduling hierarchy over atime period covering the
following sequence of events:

1. A rate-monotonicthread, RML, becomes runnable and
starts consuming CPU time periodically using afixed
reservation of 50%.

e @ \periodicthreads
O

25

Rate-monotonic thread 1 (Rfvll) —

Round-robin thread 1 (RR1) -----

Round-robin thread 2 (RR2) -----
2 Lottery thread 1 (LS1) - 4
Rate-monotonic thread 2 (RM2) -

Accumulated CPU usage (sec)

0 20 40 60 80
Time (clock ticks)

120

Figure 7: Behavior of amultilevel scheduling hierarchy. Events are
numbered according to the description in Section 5.3.

2. A round-robinbackground thread, RR1, beginsalong
computation in which it consumes all the CPU time
it can get. The rate-monotonic thread, RML, is un-
affected because the fixed-priority root scheduler al-
ways schedules the real-time scheduler in preference
to the background scheduler.

3. A second round-robin background thread, RR2, be-
comes runnable at the same priority as RR1.

4. An application thread in the timesharing class be-
comes runnable, stealing all available CPU timefrom
the background jobs for a short burst of time (eg., a
spreadsheet recal culation).

5. A second rate-monotonic thread, RM2, becomes
runnable, consuming 25% of the total CPU time. The
time available to the timesharing class is reduced
accordingly, but RML remains unaffected.

6. Thetimesharing thread, LS1, finishesits burst of ac-
tivity, allowing the background jobs to continue once

again.

5.4 Modular Control

In order to demonstrate the modular control provided
by the framework, we now consider the two third-level
schedulers in our example configuration, which represent
application-specific schedulers. The first, implementing
lottery scheduling, simulates aweb browser arbitrating be-
tween two downloaded Java applets. The browser can vary
the ticket ratio allocated to each applet according to some
policy, e.g., giving more CPU timeto appletswhose output
windows are currently on-screen. The second application-
level scheduler, a simple non-preemptive FIFO scheduler,
represents an application that uses threads merely for pro-
grammatic purposes, and does not need to maintain any no-
tion of priority or timeliness between its threads. Using a



non-preemptiveschedul er in such an application eliminates
unnecessary contention and context switches between ap-
plication threads without giving up the benefits of preemp-
tive scheduling in other parts of the system.

In thisexample, the two Java appl et threads perpetually
consume as much CPU time as possi bl e, and each of the co-
operating FIFO threads alternately run for some time and
then yield control to the other. Initialy, theticket ratio be-
tween the web browser and the cooperative application is
4:1, theratio between the appl et threads is 1:4, and each of
the FIFO threads compute for approximately the same time
beforeyieldingto theother. Figure8 showsthe behavior of
the system across four events:

1. At time 2000, the web browser changes the rela
tive ticket ratio between the Java applet threads to
be 1:1, eg., because the first has come on-screen.
The amount of CPU time alocated to the coopera
tiveapplicationremains unchanged, however, demon-
strating load insulation. Since the timesharing-class
scheduler and the web browser’s scheduler are both
lottery schedulers, this example is equivaent to the
use of two currenciesinasinglelottery scheduler[31].

2. The cooperative thread FI FOL changes its computa-
tion so that it now consumes four times the amount
of CPU time before yidding to FI FO2. The effec-
tive distribution of CPU time changes to 4:1, reflect-
ing the fact that the FIFO scheduling policy makes no
attempt at fairness. However, since the timesharing-
class scheduler uses a proportional-share policy, the
applicationsare insulated from each other and theweb
browser is unaffected. This example demonstrates
load insulation between different scheduling policies.

3. Theuser changestheticket allocation between thetwo
applications to 1:1. Both sub-schedulers automati-
cally adjust tothenew allocation accordingtotheirin-
dividual scheduling policies.

4. Finaly, the priority of RR1 is raised above that of
RR2, causing it to receive al of the CPU time allo-
cated to the round-robin scheduler while leaving the
other scheduling domains unaffected.

5.5 Avoidance of Priority Inversion

In the next experiment we demonstrate how priority
inversion can be avoided in our framework even among
threads running under different scheduling policies. For
this experiment, we use rate-monotonic thread RML, |ot-
tery scheduled thread LS1, and background thread RR1.
The rate-monotonic thread and the background thread to-
gether simulate a data acquisition application in which
a high-priority real-time thread periodically receives data
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Figure 8: Demonstration of modular control of CPU alocation. Space
between the lines represents the percentage of CPU time used by a par-
ticular thread. Events occur at 2000-tick intervals, and correspond to the
descriptionin Section 5.4.

and stores it in a memory buffer, and a low-priority com-
putational thread inspectsthat datain the background using
gpare CPU cycles. Inour simulated environment, the high-
priority thread wakes up every five clock ticks, acquires a
shared mutex lock, and then releases it one clock tick | ater.
The low-priority thread aternately acquires the lock and
computes for up to three clock ticks, and then releases it
for avarying amount of time. Thelottery schedul ed thread,
LS1, isamedium-priority thread representing other prior-
ity inversion-producingactivity inthe system; it alternately
runs and sleeps for random amounts of time up to 20 ticks,
but otherwise does not interact with the other threads.

Figure 9 shows a plot of the distribution of latencies ex-
perienced by the high-priority thread in attempting to ac-
quirethe shared mutex, with and without the voluntary do-
nation protocol described in Section 3.4. When the inheri-
tance protocol isin effect, maximum latency isbounded by
the maximum amount of time that the low-priority thread
runswith thelock held (three clock ticks), and does not re-
flect the much larger delays that would beimposed if LS1
could prevent RR1 from running while RML is waiting for
it torelease the shared lock. Thus, the framework provides
correct real-time behavior even though all threethreadsrun
under different scheduling policies: itisnot priorityinheri-
tance, but the more general CPU inheritance protocol, that
makes thiswork.

5.6 Multiprocessor Scheduling

To test the ability of our framework to support multi-
processor scheduling, we extended thetest environment to
simulate amultiprocessor. Since areal multiprocessor ma:
chine was not available for this test, we emulated one by
time dicing the BSD process at a fine granularity among
several “virtua processors.” Each processor has its own
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Figure 9: Priority inheritance between schedulers

dispatcher and root scheduler thread, but the root sched-
uler threads cooperate as described in Section 4.3 toimple-
ment a singl e fixed-priority multiprocessor scheduler with
ashared ready queue for each priority level. We tested the
multiprocessor scheduler by implementing asimple paral-
lel database lookup application, in which multiple threads
repeatedly search for a randomly chosen item in a shared
binary tree, locking and unlocking the nodes of the tree as
they descend. We ran this application on 1, 2, 4, and 8-
processor configurations, with varying numbers of worker
threads; in each case, the behavior and performance was
exactly aswould be expected fromacomparabl e traditional
scheduler. Although this experiment demonstrates that the
framework extendsto multiprocessors, we have not yet ex-
plored the effects of stacking multiprocessor scheduling
policies, nor have we implemented scheduler activations,
which we suspect will be critical to making CPU inheri-
tance scheduling work well in many practical multiproces-
sor situations.

5.7 Scheduling Overhead

While the preceding experiments demonstrate the ba-
sic properties and potentia usefulness of our scheduling
framework, it remains to be seen whether it is efficient
enoughinpractice. Incomparisonto traditional multi-class
scheduling mechanisms, our framework introducestwo ad-
ditiona sources of overhead: first, the overhead caused by
thedispatcher itself while computing thethread to switch to
after agiven event, and second, the overhead resulting from
additional context switchesto and from scheduler threads.
The computation overhead caused by a given scheduling
algorithmis not an issue, since the same agorithmscan be
used in each case.

5.7.1 Dispatcher Costs

To address thefirst issue, Table 1 shows the basic costs
of the dispatcher’s computation. These costs are depen-

Scheduling Hierarchy Depth | Dispatch Time (us) |

Root scheduler only 8.0
2-level scheduling 11.2
3-level scheduling 14.0
4-level scheduling 16.2
8-level scheduling 24.4

Table 1: Basic dispatching costs.

dent on the depth of the scheduling hierarchy since the
dispatcher must often iterate through trees and linked lists
whose length is proportional to the depth of the hierarchy.

One concern raised by the dependence of dispatch time
on scheduling hierarchy depth is that, since in theory the
framework imposes no depth limit and the dispatcher it-
self is aways effectively the “highest priority activity in
the system,” thiscreates a source of unbounded priority in-
version that would be unacceptable in hard real-time sys-
tems. However, in practice there is no reason a particular
dispatcher must support unlimited depth; the dispatcher in
ahardreal-timesystem couldlimit thedepth tofour or eight
levels, which should be sufficient for all practica purposes
and still impose little computational overhead.

5.7.2 Context Switch Costs

The second type of overhead in our framework is the
cost of additional context switches to and from scheduler
threads. Unfortunately, the cost of a context switch varies
widely between different environments, from user-level
threads packages inwhich context switchesarealmost free,
to monolithickernelsin which context switches are several
ordersof magnitude more expensive. Anobviousinference
is that our framework is likely to be practica in some en-
vironments but not in others. Therefore, in order to gain a
mesaningful idea of how expensive our framework islikely
to bein a given environment, we first measure the number
of additional context switches produced, which varieswith
different applicationsand system | oads but i snot dependent
on thread and protection boundary-crossing costs.

Table 2 shows the context switch statistics observed for
each of severa example applications: “Client/Server” isan
application in which a number of client threads repeatedly
invoke services on a smaller set of server threads, “Par-
alel Database” isthe multiprocessor binary search appli-
cation described in Section 5.6; “Resal-time” is the data
acquisition application from Section 5.5; finaly, “Gen-
eral” isthetest in Section 5.3 representing general-purpose
computing activity. The chart shows the number of times
the dispatcher switched to each thread over the course of
the test; user threads are shown separately from scheduler
threads. The last row in the table shows the percentage
of total context switches that were invocations of sched-
uler threads. This percentage is consistently near 50% re-
gardless of the application; thisindicates that, on average,



Client/ | Parallel | Real- | Genera | [[ gzip [ gcc | tar [ configure |

Server | Database | time Run time (s&c) 264 | 353 | 96 26.0
RM1 57 322 101 Context switches/sec 1| 32 81 202
RM2 19 26 Traps/sec 10 | 562 22 3470
RM3 19 System calls/sec 23 | 651 | 517 1807
LS1 25 622 17 Device interrupts/sec 427 | 509 | 3337 1055
JAVA1 46
FIFO1 9 Table 3: Scheduling-related statistics for test applicationsmeasured un-
RR1 114 238 | 249 7 der FreeBSD-2.1.5 on a 100M Hz Pentium PC.
RR2 3 242 14
RR3 234
RR4 243 . .
User invocations 292 957 | 1193 165 to 1000 (1 ms). This graph effectively shows the “toler-
Root scheduler 262 956 | 1237 142 ance” of a system to scheduling overhead in different sit-
Rate monotonic 43 1 65 uations. for example, supposing that typical users would
lja\olt;et"k}llrgeiﬂ;uler 32 57 3 tol erate no more than about 2% sl owdown for typical appli-
FIFO scheduler 1 pati ons such asgcc, our framework (or any other schedul -
Round-robin schedul er 8 8 8 ing mechanism) would have to add no more than about
Scheduler invocations 346 956 | 1303 218 300us to the process-to-process context switch timeif im-

| Total context switches || 838 | 1913 [ 2496 | 383 |

[ Schedulerinvoc. rate || 41% | 50% | 52% |  56% ]

Table 2: switch Costs for Simple Applications.

approximately one additiona scheduler thread invocation
can beexpected in our framework for each ordinary context
switch. However, note that this chart is overly pessmistic
because the “scheduler invocations’ figures include all
context switches to scheduler threads, not only those di-
rectly related to scheduling: in particular, it includes con-
text switches caused by explicit RPCs, which greatly inflate
the counts for the root scheduler in our system because our
root scheduler thread also provides message-based timers
and other facilitiesto the rest of the system.

5.7.3 Overhead in Kernel Environments

Although we have not yet implemented our framework
in a kernel environment, we can get some idea of how it
would perform in such an environment based on the re-
sults shown above and a knowledge of how real-world ap-
plications exercise the scheduler. Table 3 shows system-
wide statistics we gathered for several familiar applica-
tions running on FreeBSD 2.1.5, measured using BSD’s
vnst at command. gzi p isacompute-intensive applica
tion compressing an 8MB file; gcc isabuild of a20,000-
line program using the GNU C compiler; t ar represents
an 1/O-intensive application copying 8MB of source files;
and confi gur e isan extremely I/O and f or k-intensive
3000-line Unix shell script. All tests were performed on a
networked machine running in multi-user mode with afull
complement of daemons but no other user activity, repre-
sentative of atypical single-user workstation.

For three of the applications in Table 3, gzi p (best-
case), gcc (average), and conf i gur e (worst-case), Fig-
ure 10 shows the overall application slowdown that would
result if each normal process-to-process context switch was
n microseconds more expensive, where n varies from 1

plemented in FreeBSD. Suppose FreeBSD was changed
so that all scheduling was done in user mode, adding ap-
proximately one additional context switch due to a sched-
uler invocation for each existing process-to-process con-
text switch. Based on context switch times we mea
sured using thel mbench benchmark suite[24], which are
approximately 39us on this machine, plus an additional
11us to reflect the dispatcher’s cost (Section 5.7.1), the
overall overhead should still be negligible simply because
FreeBSD does not context switch all that often (see arrow
A on thegraph). Furthermore, given BSD’smonolithic de-
sign, we would in practice expect at least the root sched-
uler to be implemented in the kerndl and only application-
specific schedulers to be in user mode; this would reduce
the cost even further.

Of course, microkernels have much less tolerance for
scheduling overhead simply because they perform more
context switches. For example, in Mach, traps and sys-
tem calls can be expected to produce about two additional
context switches each; for an extremely “purist” microker-
nel such as L4, in which even device drivers are in user
mode, device interrupts would aso add an additiona two
context switches each. Figure 10 aso shows a plot of
scheduling overhead tolerance for a hypothetical L4-like
microkernel, based on the numbers in Table 3 except with
traps, system calls, and interruptseach counting as two ad-
ditiona context switches. For example, to keep the over-
head under 2% for gcc in this system, the additional per-
context switch cost must be no more than about 64s (see
arrow B), whichwould be difficult even with L4’ sphenom-
ena 3.2us round-trip RPC time[20]. On the other hand,
these “back of the envelope’ calculations are pessimistic
in several ways. first, an additiona scheduler invocation
should not be needed for every normal context switch, as
explained in Section 5.7.2; second, in a microkernd that
dispatches hardwareinterruptsto threads, we woul d expect
at least a minimal fixed-priority root scheduler to be im-
plemented in the kernel so that device driver threads can
be schedul ed without the hel p of user-level schedulers; and
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Microkernel:gcc (3500 csw/s) ----
Micropkernel:gzip (930 csw/s) -----
FreeBSD:configure (202 csw/s) -
/FreeBSD:gcc (32 cswis) ———
/FreeBSD:gzip (11 csw/s) -----

Overall slowdown (percent)

A

1 10 100 1000
Additional overhead per context switch (microsec)

Figure 10: Overall application slowdown as a function of additional
overhead per process-to-process context switch. In BSD, only switches
between Unix processes count; in Mach, traps and system calls count as
RPCs (two context switches each); in L4, device interrupts also count as
RPCs.

third, our prototypedispatcher is extremely unoptimizedin
terms of both its agorithm (it still causes many avoidable
context switches) and its implementation (it takes much
longer than necessary to compute the next thread to run).
There should certainly be many pointsin the design space
at which CPU inheritance scheduling is practical even for
microkernels; we are currently working on asecond proto-
type of the framework in our Fluke microkernel[10, 11] in
order to evaluate the framework further in thislight.

5.8 Code Complexity

Asafina useful metric of the practicality of our frame-
work, we measured our prototype' scode size and compl ex-
ity in terms of both raw line count and lines containing
semicolons. The entire dispatcher is contained in a sin-
gle well-commented file of 550 (raw) or 158 (semicolons)
lines. Each of our example schedulers is around 200/100
lines long; of course, production-quality schedulers that
handle processor affinity, scheduler activations, dynamic
priority adjustments, and so on, would probably be signif-
icantly bigger.

6 Conclusion

In this paper we have presented a novel processor
scheduling framework in which threads are scheduled by
other threads. Widely different scheduling policies can co-
exist in a single system, providing modular, hierarchical
control over CPU usage. Applications as well as the OS
can implement customized local scheduling policies, and
CPU resources consumed are accounted for and attributed
accurately. The framework also cleanly addresses priority
inversion by providingageneralized form of priority inher-
itance that automatically workswithin and among multiple

diverse scheduling policies. CPU inheritance scheduling
extends naturally to multiprocessors, and supports proces-
sor management techniques such as processor affinity and
scheduler activations. We have shown that this flexibility
can be provided with negligible overhead in environments
in which context switches are fast, and that the framework
should be practica even in some kernel environments in
which context switches are more expensive.
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