
CPU Inheritance Scheduling

Bryan Ford Sai Susarla

Department of Computer Science
University of Utah

Salt Lake City, UT 84112
flux@cs.utah.edu

http://www.cs.utah.edu/projects/flux/

Abstract

Traditional processor scheduling mechanisms in operat-
ing systems are fairly rigid, often supportingonly one fixed
scheduling policy, or, at most, a few “scheduling classes”
whose implementations are closely tied together in the OS
kernel. This paper presents CPU inheritance scheduling, a
novel processor scheduling framework in which arbitrary
threads can act as schedulers for other threads. Widely dif-
ferent scheduling policies can be implemented under the
framework, and many different policies can coexist in a
single system, providing much greater scheduling flexibil-
ity. Modular, hierarchical control can be provided over the
processor utilization of arbitrary administrative domains,
such as processes, jobs, users, and groups, and the CPU
resources consumed can be accounted for and attributed
accurately. Applications, as well as the OS, can imple-
ment customized local scheduling policies; the framework
ensures that all the different policies work together logi-
cally and predictably. As a side effect, the framework also
cleanly addresses priority inversion by providing a gener-
alized form of priority inheritance that automatically works
within and among diverse scheduling policies. CPU inher-
itance scheduling extends naturally to multiprocessors, and
supports processor management techniques such as proces-
sor affinity[29] and scheduler activations[3]. We show that
this flexibility can be provided with acceptable overhead in
typical environments, depending on factors such as context
switch speed and frequency.

1 Introduction

Traditional operating systems control the sharing of the
machine’s CPU resources among threads using a fixed
scheduling scheme, typically based on priorities. Some-
times a few variants on the basic policy are provided,

This research was supported in part by the Defense Advanced Re-
search Projects Agency, monitored by the Department of the Army, under
contract number DABT63–94–C–0058. The opinions and conclusions
contained in this documentare those of the authors and should not be inter-
preted as representing official views or policies of the U.S. Government.

such as support for fixed-priority threads[17], or sev-
eral “scheduling classes” to which threads with different
purposes can be assigned (e.g., real-time, interactive, or
background)[25]. However, even these variants are gener-
ally hard-coded into the system implementation and cannot
easily be adapted to the needs of individual applications.

In this paper we develop a novel processor schedul-
ing framework based on a generalized notion of priority
inheritance. In this framework, known as CPU inheri-
tance scheduling, arbitrary threads can act as schedulers for
other threads by temporarily donating their CPU time to se-
lected threads while waiting on events of interest such as
clock/timer interrupts. The receiving threads can further
donate their CPU time to other threads, and so on, form-
ing a logical hierarchy of schedulers as illustrated in Fig-
ure 1. A scheduler thread can be notified when the thread to
which it donated its CPU time no longer needs it (e.g., be-
cause the target thread has blocked), so that the CPU can be
reassigned to another target. The basic thread dispatching
mechanism necessary to implement this framework does
not have any notion of thread priority, CPU usage, or clocks
and timers; all of these functions, when needed, are imple-
mented by threads acting as schedulers.

Under this framework, arbitrary scheduling policies can
be implemented by ordinary threads cooperating with each
other through well-defined interfaces that may cross pro-
tection boundaries. For example, a fixed-priority multi-
processor scheduling policy can be implemented by main-
taining, among a group of scheduler threads (one for each
available CPU), a prioritized queue of “client” threads to
be scheduled; each scheduler thread successively picks a
thread to run and donates its CPU time to the selected tar-
get thread while waiting for an interesting event such as
quantum expiration (e.g., a clock interrupt). See Figure 2
for an illustration. If the selected thread blocks, its sched-
uler thread is notified and the CPU is reassigned. On the
other hand, if a different event causes the scheduler thread
to wake up, the running thread is preempted and the CPU is
given back to the scheduler immediately. Other scheduling
policies, such as timesharing[23], fixed-priority[12, 17],



Java applets

(lottery scheduler)

RR/FIFO scheduler)
(real-time fixed-priority

(lottery scheduler)
Jay

Background class
(gang scheduler)

Mike
(BSD scheduler)

Web browser

Root Scheduler

Real-time threads

Jay’s threads

Background jobs

Timesharing class

Figure 1: Example scheduling hierarchy. The dark circles represent
threads acting as schedulers, while the light circles represent “ordinary”
threads.

rate monotonic[22], fair share[9, 16, 19], and lottery/stride
scheduling[30, 31, 32], can be implemented in the same
way.

This scheduling framework has the following features:� It supports multiple arbitrary scheduling policies on
the same or different processors.� Since scheduler threads may run either in the OS ker-
nel or in user mode, applications can easily extend or
replace the scheduling policies built into the OS.� It provides hierarchical control over the processor re-
source usage of different logical or administrative do-
mains in a system, such as users, groups, individual
processes, and threads within a process.� CPU usage accounting can be provided to various de-
grees of accuracy depending on the resources one is
willing to invest.� Priority inversion is addressed naturally in the pres-
ence of resource contention, without the need for ex-
plicit priority inheritance/ceiling protocols.� CPU use is attributed properly even in the presence of
priority inheritance.

port

Scheduler
threads Ready

queues

CPU 1

CPU 0

Running
thread Ready

threads

scheduling
requests

Waiting thread

Scheduler

donation
CPU

App 2App 1

Figure 2: Example fixed-priority scheduler� The framework naturally extends to multiprocessors.� Processor affinity scheduling is supported.� Scheduler activations can be implemented easily.

Based on a prototype implementation in a user-level
threads package, we demonstrate that this framework be-
haves identically to traditional multi-class schedulers in
equivalent configurations, and that it provides modular re-
source control, load insulation, and priority inversion pro-
tection automatically across multiple scheduling policies.
The additional scheduling overhead caused by this frame-
work is negligible in the test environment, and we show
that it should also be acceptable in many kernel environ-
ments as well despite greater context switch costs.

The rest of this paper is organized as follows. Sec-
tion 2 describes motivation and related work, Section 3
presents the CPU inheritance scheduling algorithm in de-
tail, and Section 4 shows how traditional scheduling algo-
rithms can be implemented on this framework. Section 5
demonstrates the behavior and performance properties of
our framework through experimental results, and Section 6
concludes with a short reflective summary.

2 Motivation

Traditional operating systems divide a machine’s CPU
resources among threads using a fixed scheduling scheme,
typically based on priorities. However, the requirements
imposed on an operating system’s scheduler often vary
from application to application. For example, for interac-
tive applications, response time is usually the most criti-
cal factor—i.e., how quickly the program responds to the
user’s commands. For batch jobs, throughput is of primary



importance but latency is a minor issue. Hard real-time ap-
plications require meeting application-specific deadlines,
while for soft real-time applications, missing a deadline
is unfortunate but not catastrophic. There is no single
scheduling scheme that works well for all applications.

Over the years, the importance of providing a variety
of scheduling policies on a single machine has waxed and
waned, following hardware and application trends. In the
early years of computing, use of the entire machine was
limited to a single user thread; this evolved into multipro-
grammed machines in which a single scheduling policy
managed batch jobs effectively. The advent of timesharing
on machines still used for batch jobs caused a need for two
scheduling policies. As timesharing gradually gave way to
single-user workstations and PCs, a single scheduling pol-
icy was again adequate for a while.

Supporting multiple scheduling policies is again becom-
ing important, not because of multiple users on a system,
but because of the variety of concurrent uses to which mod-
ern systems are put. Multimedia drives the need for soft
real-time scheduling policies on general purpose worksta-
tions. Untrusted executable content (e.g., Java applets) re-
quires secure control of resource usage while also provid-
ing soft real-time guarantees. The hard real-time domain is
also making inroads onto general purpose machines as pro-
cessors and instruments supporting embedded applications
become networked, and some customers (e.g., the military)
need the ability to shift processing power dynamically to
the problem of the moment. All of these additional poli-
cies must still work alongside traditional interactive and
batch scheduling: though multimedia and video conferenc-
ing may be the current rage, this does not mean that users
no longer care about getting good interactive response from
the word processors, spreadsheets, and other applications
that they still rely on daily. Therefore, as the diversity of
applications increases, operating systems need to support
multiple coexisting processor scheduling policies, in order
to meet individual applications’ needs as well as to utilize
the system’s processor resources more efficiently.

2.1 Related Work

One simple approach to providing real-time support in
systems with traditional timesharing schedulers, which has
been adopted by many commonly-used systems such as
Unix, Mach[1, 4], and Windows NT[25], and has even be-
come part of the POSIX standard[17], is support for fixed-
priority threads. Although these systems generally still use
conventional priority-based timesharing schedulers, they
allow real-time applications to disable the normal dynamic
priority adjustments on threads specifically designated as
“real-time threads,” so that those threads always run at a
programmer-defined priority. By carefully assigning pri-
orities to the real-time threads in the system and ensuring
that all non-real-time threads execute at lower priority, it

is possible to obtain the correct behavior for some appli-
cations. However, this approach has serious, well-known
limitations; in many cases, entirely different non-priority-
based scheduling policies are needed[18].

Even in normal interactive and batch-mode computing,
traditional priority-based scheduling algorithms are show-
ing their age. For example, these algorithms do not pro-
vide a clean way to encapsulate a set of processes/threads
as a single unit to isolate and control their processor usage
relative to the rest of the system. This shortcoming opens
the system to various denial-of-service attacks, the most
well-known being the creation of a large number of threads
which overwhelm processor resources and crowd out other
activity. These vulnerabilities generally don’t cause seri-
ous problems for machines only used by one person, or
when the users of the system fall into one administrative
domain and can “complain to the boss” if someone is abus-
ing the system. However, as distributed and mobile com-
puting becomes more prevalent and administrative bound-
aries become increasingly blurred, this form of system se-
curity is becoming more important. This is especially true
when completely unknown, untrusted code is downloaded
and run in a “secure” environment such as that provided
by Java[13] or OmniWare[2]. Schedulers have been de-
signed that address this problem by providing flexible hi-
erarchical control over CPU usage at different administra-
tive boundaries[5, 14, 15, 30, 31, 32]. However, it is not yet
clear how these algorithms will address other needs, such
as those of hard real-time applications; certainly it seems
unlikely that a single “holy grail” of scheduling policies
will be found.

With the growing diversity of application needs and
scheduling policies, it is increasingly desirable for an op-
erating system to support multiple independent policies.
On multiprocessor systems, one simple but limited way of
doing this is to run a different scheduling policy on each
processor. A more general approach is to allow multi-
ple “scheduling classes” to run on a single processor, with
a specific scheduling policy associated with each class.
The classes have a strictly ordered priority relationship to
each other, so the highest-priority class gets all the CPU
time it wants, the next class gets any CPU time left un-
used by the first class, etc. Although this approach shows
promise, one drawback is that since the schedulers for the
different classes generally don’t communicate or cooperate
with each other closely, only the highest-priority schedul-
ing class on a given processor can make any assumptions
about how much CPU time it will have to dispense to the
threads under its control.

Additionally, most existing multi-policy scheduling
mechanisms still require every scheduling policy to be
implemented in the kernel and to be closely tied with other
kernel mechanisms such as threads, context switching,
clocks, and timers. The only existing system we know
of that allows different scheduling policies to be imple-



mented in separate, unprivileged protection domains is
the Aegis Exokernel[8]. However, the Aegis scheduling
mechanism was not described at length and does not
address important issues such as timing, CPU usage
accounting, and multiprocessor scheduling. Both Aegis’s
scheduling mechanism and our framework are based
on the use of a “directed yield” primitive which allows
application-level threads to schedule each other; this core
concept originally comes from coroutines[6], in which
directed yield is the only way thread switching is done. We
believe our scheduling framework could be implemented
in an Exokernel environment through the use of suitable
kernel primitives, application-level support code, and
standardized inter-process scheduling protocols.

Finally, most existing systems still suffer from vari-
ous priority inversion problems. Priority inversion oc-
curs when a high-priority thread requesting a service has
to wait arbitrarily long for a low-priority thread to fin-
ish being serviced. This problem can be addressed in
priority-based scheduling algorithms by supporting prior-
ity inheritance[7, 26], wherein the thread holding up the
service inherits the priority of the highest priority thread
waiting for service. In some cases this approach can be
adapted to other scheduling policies, such as with ticket
transfer in lottery scheduling[31]. However, the problem
of resolving priority inversion between threads of different
scheduling classes using policies with different and incom-
parable notions of “priority” has not been addressed so far.

3 CPU Inheritance Scheduling
In our scheduling model, as in traditional systems, a

thread is a virtual CPU whose purpose is to execute instruc-
tions. A thread may or may not have a real CPU assigned to
it at any given instant; a running thread may be preempted
and its CPU reassigned to another thread at any time. (For
the purposes of this framework, it is not important whether
these threads are kernel-managed or user-managed threads,
or whether they run in supervisor or user mode.)

In traditional systems, threads are generally scheduled
by some lower-level entity, such as a scheduler in the OS
kernel or a user-level threads package. In contrast, the ba-
sic idea of CPU inheritance scheduling is that threads are
scheduled by other threads. Any thread that has a real CPU
available to it at a given instant can donate its CPU tem-
porarily to another specific thread instead of using the CPU
itself. This operation is similar to priority inheritance in
conventional systems, except that it is done explicitly by
the donating thread, and no notion of “priority” is involved,
only a direct transfer of the CPU from one thread to an-
other; hence the name “CPU inheritance.”

A scheduler thread is a thread that spends most of its
time donating its CPU resources to client threads; the client
threads thus inherit some portion of the scheduler thread’s
CPU resources, and treat that portion as their virtual CPU.

Client threads can in turn act as scheduler threads, distribut-
ing their CPU time among their own clients, and so on,
forming a scheduling hierarchy.

The only threads in the system that inherently have ac-
tual CPU time available to them are the set of root sched-
uler threads; other threads can only run if CPU time is do-
nated to them. There is one root scheduler thread for each
real CPU in the system; each CPU is permanently dedi-
cated to supplying CPU time to its associated root sched-
uler thread. The actions of the root scheduler thread on a
given CPU determine the base-level scheduling policy for
that CPU.

3.1 The Dispatcher

Even though all high-level scheduling decisions are per-
formed by threads, a small low-level mechanism is still
needed to implement primitive thread management func-
tions. We call this low-level mechanism the dispatcher to
distinguish it clearly from high-level schedulers.

The role of the dispatcher is to to implement thread
blocking, unblocking, and CPU donation. The dispatcher
fields events and directs them to threads waiting on those
events, without actually making any real scheduling de-
cisions. Events can be synchronous, such as an explicit
wake-up of a sleeping thread by a running thread, or asyn-
chronous, such an external interrupt (e.g., I/O or timer).
The dispatcher itself is not a thread; it merely runs in the
context of whatever thread owns the CPU at the time an
event of interest occurs.

The dispatcher inherently contains no notion of thread
priorities, CPU usage, or even clocks and timers. In a ker-
nel supporting CPU inheritance scheduling, the dispatcher
is the only scheduling component that must be in the ker-
nel; all other scheduling code could in theory run in user-
mode threads outside of the kernel (although this “purist”
approach may be impractical for performance reasons).

3.2 Requesting CPU Time

Because no thread (except a root scheduler thread) can
ever run unless some other thread donates CPU time to it,
a newly-created or newly-woken thread must request CPU
time from some scheduler before it can run. Each thread
has an associated scheduler which has primary responsibil-
ity for providing CPU time to the thread. When the thread
becomes ready, the dispatcher notifies the thread’s sched-
uler that the thread needs CPU time. The exact form such
a notification takes is not important; in our implementa-
tion, notifications are simply IPC messages sent by the dis-
patcher to Mach-like message ports.

When a thread wakes up, the notification it produces may
in turn wake up a scheduler thread waiting to receive such
messages on its port. Waking up that scheduler thread will



cause another notification to be sent to its scheduler, which
may wake up still another thread, and so on. Thus, wak-
ing up an arbitrary thread can cause a chain of wakeups to
propagate back through the scheduler hierarchy. Eventu-
ally, this propagation may wake up a scheduler thread that
is currently being supplied with CPU time but is donating it
to some other thread. In that case, the thread currently run-
ning on that CPU is preempted and control is given back
to the woken scheduler thread immediately; the scheduler
can then make a decision to re-run the preempted client,
switch to the newly-woken client, or even run some other
thread. Alternatively, the propagation of wake-up events
may terminate at some point, for example because a noti-
fied scheduler is already awake (not waiting for messages)
but has been preempted. In that case, the dispatcher knows
that the wake-up event is irrelevant for scheduling purposes
at the moment, so the currently running thread is resumed
immediately.

3.3 Relinquishing the CPU

At any time, a running thread may block to wait for one
or more events to occur, such as I/O completion or timer
expiration. When a thread blocks, the dispatcher returns
control of the CPU to the scheduler thread that provided
it to the running thread. That scheduler may then choose
another thread to run, or it may relinquish the CPU to its
scheduler, and so on up the line until some scheduler finds
work to do.

3.4 Voluntary Donation

Instead of simply blocking, a running thread can volun-
tarily donate its CPU to another thread while waiting on an
event of interest; this is done in situations where priority in-
heritance would traditionallybe used. For example, when a
thread attempts to obtain a lock that is already held, it may
donate its CPU time to the thread holding the lock; simi-
larly, when a thread makes an RPC to a server thread, the
client thread may donate its CPU time to the server for the
duration of the request. When the event of interest occurs,
the donation ends and the CPU is given back to the original
thread. In our implementation of this framework, the basic
synchronization and IPC primitives automatically invoke
the dispatcher to perform voluntary donation appropriately
when the thread blocks; however, voluntarydonation could
also be done optionally or through explicit dispatcher calls.

It is possible for a single thread to inherit CPU time
from more than one source at a given time: for example,
a thread holding a lock may inherit CPU time from several
threads waiting on that lock in addition to its own sched-
uler. In this case, the effect is that the thread has the op-
portunity to run at any time any of its donor threads would
have been able to run. A thread only “uses” one CPU
source at a time; however, if its current CPU source runs

S0

T2

T1

T0

CPU

S1

Figure 3: CPU donation chain

out (e.g., due to quantum expiration), the dispatcher will
automatically send scheduling request notifications on be-
half of all the threads depending on (donating to) to the pre-
empted thread, effectively switching the thread automati-
cally to another available CPU source. One potential worry
is that a thread consuming CPU time from many sources
will cause an “avalanche effect” every time it is preempted
or woken as the dispatcher fires off several scheduling re-
quests, each of which may cause more scheduling requests
as intermediate-level schedulers are woken up. We believe
that in practice it should be uncommon for a thread to in-
herit from more than one or two other threads at once, so
this should not be a major problem; however, we have not
yet examined this issue in detail.

3.5 The schedule operation

The call a scheduler thread makes to donate CPU time to
a client thread is simply a special form of voluntary CPU
donation, in which the thread to donate to and the event to
wait for can be specified explicitly. In our implementation,
the schedule operation takes as parameters a thread to
donate to, a port on which to wait for messages from other
client threads, and a wakeup sensitivity parameter indicat-
ing in what situations the scheduler should be woken. The
operation donates the CPU to the specified target thread and
puts the scheduler thread to sleep on the specified port; if a
message arrives on that port, such as a notification that an-
other client thread has been woken or a message indicating
that a timer has expired, then theschedule operation ter-
minates and control is returned to the scheduler thread.

In addition, the schedule operation may be inter-
rupted before a message arrives, depending on the behav-
ior of the thread to which the CPU is being donated and
the value of the wakeup sensitivity parameter. The wakeup
sensitivity level acts as a hint to the dispatcher allowing it to
avoid waking up the scheduler thread except when neces-
sary; it is only an optimization and is not in theory required
for the system to work. Our system supports the following
three sensitivity levels:� WAKEUP ON BLOCK: If the target of theschedule

operation blocks without further donating the CPU,



then the schedule operation terminates and con-
trol is returned to the scheduler immediately. For ex-
ample, in Figure 3, if scheduler thread S1 has do-
nated the CPU to thread T2 using this wakeup sen-
sitivity setting, but T2 blocks and can no longer
use the CPU, then S1 will receive control again.
WAKEUP ON BLOCK is the “most sensitive” setting,
and is typically used when the scheduler has other
client threads waiting to run.� WAKEUP ON SWITCH: If the client thread using the
CPU (T2) blocks, control is not immediately returned
to its scheduler (S1): the dispatcher behaves instead
as if S1 itself blocked, and passes control on back to
its scheduler, S0. If T2 is subsequently woken up,
then when S0 again provides the CPU to S1, the dis-
patcher passes control directly back to T2 without ac-
tually running S1. However, if a different client ofS1, such as T1, wakes up and sends a notification toS1’s message port, then S1’s schedule operation
will be interrupted. This sensitivity level is typically
used when a scheduler has only one thread to run at
the moment and doesn’t care when that thread blocks
or unblocks, but it still wants to switch between differ-
ent client threads manually: for example, the sched-
uler may need to start and stop timers when switching
between client threads.� WAKEUP ON CONFLICT: The scheduler is only
awakened if a second client thread wakes up while
the scheduler is already donating CPU to a client
(e.g., if T1 wakes up while T2 is running). If T2
blocks, the scheduler blocks too; then, if any single
client of scheduler S1 is subsequently woken, such
as T1, the dispatcher passes control directly to the
woken client thread without waking up the scheduler.
At this weakest sensitivity level, the dispatcher is
allowed to switch among client threads freely; the
scheduler only acts as a “conflict resolver,” making
decisions when two client threads are runnable at the
same time.

4 Implementing High-level Schedulers
This section describes how the basic CPU inheritance

mechanism can be used to implement high-level schedul-
ing policies and related features such as CPU usage ac-
counting, processor affinity, and scheduler activations.

4.1 Single-CPU Schedulers

Figure 4 shows a simplified code fragment from a basic
non-prioritized FIFO scheduler in our system. The sched-
uler keeps a queue of client threads waiting for CPU time,
and successively runs each one using theschedule oper-
ation while waiting for messages to arrive on its port (e.g.,

void fifo_scheduling_loop()
{

cur_thread = NULL;
more_msgs = 1;
for (;;) {

if (more_msgs) {
more_msgs = msg_rcv(&fifo_pset, &msg);

} else {

/* Select the thread to run next. */
if ((cur_thread == 0) &&

!queue_empty(&fifo_runq))
cur_thread = q_remove(&fifo_runq);

/* Select wakeup sensitivity level. */
cond = q_is_empty(&fifo_runq) ?

WAKEUP_ON_CONFLICT : WAKEUP_ON_BLOCK;

/* Schedule and wait for messages. */
if (cur_thread != NULL)

more_msgs = schedule(fifo_pset, &msg,
cur_thread, cond);

else
more_msgs = msg_rcv(fifo_pset, &msg);

}

/* Process the received message. */
switch (msg.request_code) {

case MSG_SCHED_REQUEST:
/* A client thread wants to run. */
q_enter(&fifo_runq, msg.thread_id);
break;

case MSG_SCHED_BLOCKED:
/* Last thread gave up the CPU. */
cur_thread = 0;
break;

}
}

}

Figure 4: Example single-processor FIFO scheduler.

notifications from newly-woken client threads). When
there are no client threads waiting to be run, the sched-
uler uses the ordinary non-donatingmsg rcv operation in-
stead of the schedule operation in order to relinquish
the CPU while waiting for messages. If there is only
one client thread in the scheduler’s queue, the scheduler
uses the weaker WAKEUP ON CONFLICT sensitivity level
when running it to indicate that the dispatcher may switch
among client threads arbitrarily as long as only one client
thread attempts to use the CPU at a time.

4.2 Timekeeping and Preemption

The simple FIFO scheduler above can be converted to a
round-robin scheduler by introducing some form of clock
or timer. For example, if the scheduler is the root scheduler
on a CPU, then the scheduler might be directly responsible
for servicing clock interrupts. Alternatively, the scheduler
may rely on a separate “timer thread” to notify it when a



periodic timer expires. In any case, a timer expiration or
clock interrupt is indicated to the scheduler by a message
being sent to the scheduler’s port. This message causes
the scheduler to break out of its schedule operation and
preempt the CPU from whatever client thread was using
it. The scheduler can then move that client to the tail of
the ready queue for its priority and give control to the next
client thread at the same priority.

4.3 Multiprocessor Support

Since the example scheduler above only contains a sin-
gle scheduler thread, it can only schedule a single client
thread at once. Therefore, although it can be run on a
multiprocessor system, it cannot take advantage of multi-
ple processors simultaneously. For example, a separate in-
stance of the FIFO scheduler could be run as the root sched-
uler on each processor; a client thread assigned to a given
scheduler is effectively bound to its scheduler’s CPU. Al-
though in some situations this arrangement can be useful,
e.g., when each processor is to be dedicated to a particular
purpose, in most cases it is not what is needed.

In order for a scheduler to provide “real” multiproces-
sor scheduling to its clients, where different client threads
can be dynamically assigned to different processors on de-
mand, the scheduler itself must be multi-threaded. Assume
for now that the scheduler knows how many processors are
available, and can bind threads to processors. (This is triv-
ial if the scheduler is run as the root scheduler on some or all
processors; we will show later how this requirement can be
met for non-root schedulers.) The scheduler creates a sepa-
rate thread bound to each processor; each of these scheduler
threads then selects and runs client threads on that proces-
sor. The scheduler threads cooperate with each other us-
ing shared variables, e.g., shared run queues in the case of
a multiprocessor FIFO scheduler.

Since a scheduler’s client threads are supposed to be un-
aware that they are being scheduled on multiple proces-
sors, the scheduler exports only a single port representing
the scheduler as a whole to all of its clients. When a client
thread wakes up and sends a notification to the scheduler
port, the dispatcher arbitrarily wakes up one of the sched-
uler threads waiting on that port. A good policy is for the
dispatcher to wake up the scheduler thread associated with
the CPU on which the wakeup is being done; this allows
the scheduler to be invoked on the local processor without
interfering with other processors unnecessarily. If the wo-
ken scheduler thread discovers that the newly woken client
should be run on a different processor (e.g., because it is al-
ready running a high-priority client but another scheduler
thread is running a low-priority client), it can interrupt the
other scheduler thread’s schedule operation by sending
it a message or “signal”; this corresponds to sending inter-
processor interrupts in traditional systems.

4.3.1 Processor Affinity
Scheduling policies that take processor affinity into

consideration[27, 28, 29], can be implemented by treat-
ing each scheduler thread as a processor and attempting
to schedule a client thread from the same scheduler thread
that previously donated CPU time to that client thread. Of
course, this will only work if the scheduler threads them-
selves are consistently run on the same processor. Any pro-
cessor affinity support in one scheduling layer will only
work well if all the layers between it and the root scheduler
also consider processor affinity; a mechanism to ensure this
is described in the next section.

4.3.2 Scheduler Activations
In the common case, client threads “communicate” with

their schedulers implicitly through notifications sent by the
dispatcher on behalf of the client threads. However, there
is nothing to prevent client threads from explicitly commu-
nicating with their schedulers through some additional in-
terface. One particularly useful explicit interface is sched-
uler activations[3], which allows clients to determine ini-
tially and later track the number of actual processors avail-
able to them. Clients can then create or destroy threads as
appropriate in order to make use of all available proces-
sors without creating superfluous threads that compete with
each other uselessly on a single processor.

Since scheduler threads are notified by the dispatcher
when a client thread blocks and temporarily cannot use the
CPU (e.g., because the thread is waiting for an I/O request
or a page fault to be serviced), the scheduler can notify the
client in such a situation and give the client an opportunity
to create a new thread to make use of the CPU while the
original thread is blocked. For example, a client can cre-
ate a pool of “dormant” threads, or “activations,” which the
scheduler knows about but normally never runs. If a CPU
becomes available, e.g., because of another client thread
blocking, the scheduler “activates” one of these dormant
threads on the CPU vacated by the blocked client thread.
Later, when the blocked thread eventually unblocks and re-
quests CPU time again, the scheduler preempts one of the
currently running client threads and notifies the client that
it should make one of the active threads dormant again.

Scheduler activations were originally devised to provide
better support for application-specific thread packages run-
ning in a single user mode process. In an OS kernel that im-
plements CPU inheritance scheduling, extending a sched-
uler to provide this support should be quite straightforward.
However, in a multiprocessor system based on CPU in-
heritance scheduling, scheduler activations are also useful
in stacking of first-class schedulers. As mentioned previ-
ously, multiprocessor schedulers need to know the num-
ber of processors available in order to use the processors
efficiently. As long as a base-level scheduler (e.g., the
root scheduler on a set of CPUs) supports scheduler activa-
tions, a higher-level multiprocessor scheduler running as a



client of the base-level scheduler can use the scheduler ac-
tivations interface to track the number of processors avail-
able and schedule its clients effectively. (Simple single-
threaded schedulers that only make use of one CPU at a
time don’t need scheduler activations and can be stacked
on top of any scheduler.)

4.4 Timing

Most scheduling algorithms require a measurable no-
tion of time in order to implement preemptive scheduling.
For most schedulers, a periodic interrupt is sufficient, al-
though some real-time schedulers may need finer-grained
timers whose periods can be changed at each quantum.
With CPU inheritance scheduling, the precise nature of the
timing mechanism is not important to the general frame-
work; all that is needed is some way for a scheduler thread
to be woken up after some amount of time has elapsed. In
our implementation, schedulers can register timeouts with
a central clock interrupt handler; when a timeout occurs, a
message is sent to the appropriate scheduler’s port, waking
up the scheduler. The dispatcher automatically preempts
the running thread if necessary and passes control to the
scheduler so that it can account for the elapsed time and po-
tentially switch to a different client thread.

4.4.1 CPU Usage Accounting
Besides simply deciding which thread to run next, sched-

ulers often must account for CPU resources consumed.
CPU accounting information is used for a variety of pur-
poses, such as reporting usage statistics to the user on de-
mand, modifying scheduling policy based on CPU usage
(e.g., dynamically adjusting thread priority), or billing a
customer for CPU time consumed for a particular job. As
with scheduling policies, there are many possible CPU
accounting mechanisms, each with different cost/benefit
tradeoffs. The CPU inheritance scheduling framework al-
lows a variety of accounting policies to be implemented by
scheduler threads.

There are two well-known approaches to CPU usage ac-
counting: statistical and time stamp-based[4]. With sta-
tistical accounting, the scheduler wakes up on every clock
tick, checks the currently running thread, and charges the
entire time quantum to that thread. This method is quite
efficient, since the scheduler generally wakes up on ev-
ery clock tick anyway; however, it provides limited accu-
racy. A variation that provides better accuracy at slightly
higher cost is to sample the current thread at random points
between clock ticks[21]. Alternatively, with time stamp-
based accounting, the scheduler reads the current time at
every context switch and charges the appropriate thread for
the time since the last context switch. This method pro-
vides extremely high accuracy, but also imposes a high cost
due to lengthened context switch times, especially on sys-
tems on which reading the current time is expensive.

In the root scheduler on a processor, these methods can
be applied directly. To implement statistical accounting,
the scheduler simply checks what thread it ran last upon be-
ing woken up by the arrival of a timeout message. To im-
plement time stamp-based accounting, the scheduler reads
the current time each time it schedules a different client
thread. The scheduler must use the WAKEUP ON BLOCK
sensitivity level in order to ensure that it can check the time
at each thread switch and to ensure that idle time is not
charged to any thread.

For schedulers stacked on top of other schedulers, CPU
accounting becomes a little more complicated because the
CPU time supplied to such a scheduler is already “virtual”
and cannot be measured accurately by a wall-clock timer.
For example, in Figure 3, if scheduler S1 measures T2’s
CPU usage using a wall-clock timer, then it may mistakenly
charge against T2 time actually used by the high-priority
thread T0, which S1 has no knowledge of because it is
scheduled by the root scheduler S0. In many cases, this
inaccuracy caused by stacked schedulers may be ignored
in practice on the assumption that high-priority threads and
schedulers will consume relatively little CPU time; this as-
sumption is similar to the one made in many existing ker-
nels that hardware interrupt handlers consume little enough
CPU time that they may be ignored for accounting pur-
poses. In situations in which this assumption is not valid
and accurate CPU accounting is needed for stacked sched-
ulers, virtual CPU time information provided by base-level
schedulers can be used instead of wall-clock time, at the
cost of additional communication between schedulers. For
example, in Figure 3, at each clock tick (for statistical ac-
counting) or each context switch (for time stamp-based ac-
counting), scheduler S1 could request its own virtual CPU
time usage from S0 instead of checking the current wall-
clock time. It then uses this virtual time information to
maintain usage statistics for its clients, T1 and T2.

4.4.2 Effects of CPU Donation on Timing
As mentioned earlier, CPU donation can occur implicitly

as well as explicitly, e.g., to avoid priority inversion when
a high-priority thread attempts to lock a resource already
held by a low-priority thread. For example, in Figure 5,
scheduler S0 has donated the CPU to high-priority threadT0 in preference over low-priority thread T1. However, it
turns out that T1 is holding a resource needed by T0, so T0
implicitly donates its CPU time to T1. Since this donation
merely extends the scheduling chain, S0 is unaware that the
switch occurred, and it continues to charge CPU time used
to T0 instead of T1 which is the thread that is actually using
the CPU.

While it may seem non-intuitive at first, in practice this
is often precisely the desired behavior; it stems from the
basic rule that with privilege comes responsibility. WhileT0 is donating CPU to T1, T1 is effectively doing work
on behalf of T0, even if T1 is unaware that it is receiving



(high-priority)
T0

CPU S0

T1
(low-priority)

Figure 5: Implicit CPU donation from high-priority thread T0 to low-
priority thread T1 to avoid priority inversion during a resource conflict.

CPU time from T0. Since T0’s share of the CPU is being
used to perform this work, the CPU time consumed must
also be charged to T0, even if the work is actually being
done by another thread. Demonstrated another way, charg-
ing T1 rather than T0 would allow the accounting system
to be subverted. For example, if high-priority CPU time is
“expensive” and low-priorityCPU time is “cheap,” then T0
could collude with T1 to use high-priority CPU time while
being charged the low-priority “rate” simply by arranging
for T1 to do all the actual work while T0 blocks on a lock
perpetually held by T1. This ability to charge the “proper”
thread for CPU usage even in the presence of priority in-
heritance is unnatural and difficult to implement in tradi-
tional systems, and therefore is generally not implemented
by them; on the other hand, this feature falls out of the CPU
inheritance framework automatically.

4.5 Threads with Multiple Scheduling Policies

Sometimes it is desirable for a single thread to be asso-
ciated with two or more scheduling policies at once. For
example, a thread may normally run in a real-time rate-
monotonic scheduling class; however, if the thread’s quan-
tum expires before its work is done, it may be desirable for
the thread to drop down to the normal timesharing class in-
stead of simply stopping dead in its tracks.

Support for multiple scheduling policies per thread can
be achieved in our framework even under a dispatcher that
supports only a single scheduler association per thread, by
creating one or more additional “dummy” threads which
perpetually donate their CPU time to the “primary” thread.
Each of these threads can have a different scheduler asso-
ciation, and the dispatcher automatically ensures that the
primary thread always uses the highest priority scheduler
available, as described in Section 3.4. In situations in
which this solution is not acceptable due to performance or
memory overhead, the dispatcher could easily be extended
to allow multiple schedulers to be associated with a sin-
gle thread, so that when such a thread becomes runnable
the dispatcher automatically notifies all of the appropriate
schedulers.

Although it may at first seem inefficient to notify two or
more schedulers when a single thread awakes, in practice
many of these notifications never actually need to be deliv-
ered. For example, if a real-time/timesharing thread wakes

up, finishes all of its work and goes back to sleep again be-
fore its real-time scheduling quantum is expired (presum-
ably the common case), then the notification posted to the
low-priority timesharing scheduler at wakeup time will be
canceled (removed from the queue) when the thread goes to
sleep again, so the timesharing scheduler effectively never
sees it.

5 Analysis and Experimental Results
We have created a prototype implementation of this

scheduling framework and devised a number of tests to
evaluate its flexibility, performance, and practicality.

5.1 Test Environment

In order to provide a clean, easily controllable environ-
ment, we implemented an initial prototype of this frame-
work in a user-level threads package. The threads package
supports common abstractions such as mutexes, condition
variables, and message ports for inter-thread communica-
tion and synchronization. The package implements sepa-
rate thread stacks with setjmp/longjmp, and the virtual
CPU timer alarm signal (SIGVTALRM) is used to provide
preemption and simulate clock interrupts. We used the vir-
tual CPU timer instead of the wall-clock timer in order to
minimize distortion of the results due to other activity in
the host Unix system; in a “real” user-level threads pack-
age based on this scheduling framework, the normal wall-
clock timer would probably be used instead. Our prototype
allows threads to wait on only one event at a time; how-
ever, there is nothing about the framework that makes it in-
compatible with thread models in which threads can wait
on multiple events at once[25].

Although implemented in user space, our prototype is
designed to reflect the structure and execution environment
of an actual OS kernel running in privileged mode. For ex-
ample, the dispatcher itself is passive, nonpreemptible code
executed in the context of the currently running thread, an
environment similar to that of BSD and other traditional
kernels. The dispatcher is cleanly isolated from the rest of
the system, and supports scheduling hierarchies of unlim-
ited depth and complexity. Our prototype schedulers are
also isolated from each other and from their clients; the
various components communicate with each other through
message-based protocols that could easily be adapted to op-
erate across protection domains using IPC.

Except where otherwise noted, all measurements were
taken on a 100MHz Pentium PC with 32 megabytes of
RAM, running FreeBSD 2.1.5.

5.2 Scheduler Configuration

The following experiments are based on scheduling hi-
erarchy shown in Figure 6, which is designed to reflect



Round-robin

Real-time Scheduler
Rate-monotonicRoot Scheduler

Fixed-priority 

FIFO Scheduler
Non-preemptive

threads
Cooperating

Real-time
periodic threads

Java applet
threads

RM2

LS1

JAVA1

JAVA2

FIFO1

RM1

FIFO2

RR1

RR2

Timesharing Class

Background

Web browser

Lottery scheduling

Lottery scheduling

Figure 6: Multilevel scheduling hierarchy used for tests.

the activity present in a general-purpose environment. In
this environment, the root scheduler is a nonpreemptive
fixed-priority scheduler with a first-come-first-served pol-
icy among threads of same priority. This scheduler arbi-
trates between three scheduling classes: a real-time rate-
monotonic scheduler at the highest priority, a lottery sched-
uler providing a timesharing class, and a simple round-
robin scheduler for background jobs. On top of the lottery
scheduler managing the timesharing class, an application-
specific third-level scheduler manages two threads using
lottery scheduling (e.g., a Web browser managing Java ap-
plet threads). Finally, a second application-specific sched-
uler in the timesharing class schedules two cooperating
threads using nonpreemptive FIFO scheduling.

5.3 Scheduling Behavior

The purpose of our first experiment is simply to ver-
ify that our framework works as expected, producing the
same scheduling behavior as traditional single- and multi-
class schedulers do in equivalent configurations. Figure 7
shows the scheduling behavior of the threads simulated in
our scheduling hierarchy over a time period covering the
following sequence of events:

1. A rate-monotonic thread, RM1, becomes runnable and
starts consuming CPU time periodically using a fixed
reservation of 50%.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

A
cc

um
ul

at
ed

 C
P

U
 u

sa
ge

 (
se

c)

Time (clock ticks)

1 2 3 4 5

6

Rate-monotonic thread 1 (RM1)
Round-robin thread 1 (RR1)
Round-robin thread 2 (RR2)

Lottery thread 1 (LS1)
Rate-monotonic thread 2 (RM2)

Figure 7: Behavior of a multilevel scheduling hierarchy. Events are
numbered according to the description in Section 5.3.

2. A round-robin background thread, RR1, begins a long
computation in which it consumes all the CPU time
it can get. The rate-monotonic thread, RM1, is un-
affected because the fixed-priority root scheduler al-
ways schedules the real-time scheduler in preference
to the background scheduler.

3. A second round-robin background thread, RR2, be-
comes runnable at the same priority as RR1.

4. An application thread in the timesharing class be-
comes runnable, stealing all available CPU time from
the background jobs for a short burst of time (e.g., a
spreadsheet recalculation).

5. A second rate-monotonic thread, RM2, becomes
runnable, consuming 25% of the total CPU time. The
time available to the timesharing class is reduced
accordingly, but RM1 remains unaffected.

6. The timesharing thread, LS1, finishes its burst of ac-
tivity, allowing the background jobs to continue once
again.

5.4 Modular Control

In order to demonstrate the modular control provided
by the framework, we now consider the two third-level
schedulers in our example configuration, which represent
application-specific schedulers. The first, implementing
lottery scheduling, simulates a web browser arbitrating be-
tween two downloaded Java applets. The browser can vary
the ticket ratio allocated to each applet according to some
policy, e.g., giving more CPU time to applets whose output
windows are currently on-screen. The second application-
level scheduler, a simple non-preemptive FIFO scheduler,
represents an application that uses threads merely for pro-
grammatic purposes, and does not need to maintain any no-
tion of priority or timeliness between its threads. Using a



non-preemptive scheduler in such an application eliminates
unnecessary contention and context switches between ap-
plication threads without giving up the benefits of preemp-
tive scheduling in other parts of the system.

In this example, the two Java applet threads perpetually
consume as much CPU time as possible, and each of the co-
operating FIFO threads alternately run for some time and
then yield control to the other. Initially, the ticket ratio be-
tween the web browser and the cooperative application is
4:1, the ratio between the applet threads is 1:4, and each of
the FIFO threads compute for approximately the same time
before yielding to the other. Figure 8 shows the behavior of
the system across four events:

1. At time 2000, the web browser changes the rela-
tive ticket ratio between the Java applet threads to
be 1:1, e.g., because the first has come on-screen.
The amount of CPU time allocated to the coopera-
tive application remains unchanged, however, demon-
strating load insulation. Since the timesharing-class
scheduler and the web browser’s scheduler are both
lottery schedulers, this example is equivalent to the
use of two currencies in a single lottery scheduler[31].

2. The cooperative thread FIFO1 changes its computa-
tion so that it now consumes four times the amount
of CPU time before yielding to FIFO2. The effec-
tive distribution of CPU time changes to 4:1, reflect-
ing the fact that the FIFO scheduling policy makes no
attempt at fairness. However, since the timesharing-
class scheduler uses a proportional-share policy, the
applications are insulated from each other and the web
browser is unaffected. This example demonstrates
load insulation between different scheduling policies.

3. The user changes the ticket allocation between the two
applications to 1:1. Both sub-schedulers automati-
cally adjust to the new allocation according to their in-
dividual scheduling policies.

4. Finally, the priority of RR1 is raised above that of
RR2, causing it to receive all of the CPU time allo-
cated to the round-robin scheduler while leaving the
other scheduling domains unaffected.

5.5 Avoidance of Priority Inversion

In the next experiment we demonstrate how priority
inversion can be avoided in our framework even among
threads running under different scheduling policies. For
this experiment, we use rate-monotonic thread RM1, lot-
tery scheduled thread LS1, and background thread RR1.
The rate-monotonic thread and the background thread to-
gether simulate a data acquisition application in which
a high-priority real-time thread periodically receives data

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

R
el

at
iv

e 
C

P
U

 ti
m

e 
al

lo
ca

tio
n 

(p
er

ce
nt

)

Time (clock ticks)

1 2 3 4

JAVA1

JAVA2

FIFO1
FIFO2

RR1

RR2

Figure 8: Demonstration of modular control of CPU allocation. Space
between the lines represents the percentage of CPU time used by a par-
ticular thread. Events occur at 2000-tick intervals, and correspond to the
description in Section 5.4.

and stores it in a memory buffer, and a low-priority com-
putational thread inspects that data in the background using
spare CPU cycles. In our simulated environment, the high-
priority thread wakes up every five clock ticks, acquires a
shared mutex lock, and then releases it one clock tick later.
The low-priority thread alternately acquires the lock and
computes for up to three clock ticks, and then releases it
for a varying amount of time. The lottery scheduled thread,
LS1, is a medium-priority thread representing other prior-
ity inversion-producingactivity in the system; it alternately
runs and sleeps for random amounts of time up to 20 ticks,
but otherwise does not interact with the other threads.

Figure 9 shows a plot of the distribution of latencies ex-
perienced by the high-priority thread in attempting to ac-
quire the shared mutex, with and without the voluntary do-
nation protocol described in Section 3.4. When the inheri-
tance protocol is in effect, maximum latency is bounded by
the maximum amount of time that the low-priority thread
runs with the lock held (three clock ticks), and does not re-
flect the much larger delays that would be imposed if LS1
could prevent RR1 from running while RM1 is waiting for
it to release the shared lock. Thus, the framework provides
correct real-time behavior even though all three threads run
under different scheduling policies: it is not priority inheri-
tance, but the more general CPU inheritance protocol, that
makes this work.

5.6 Multiprocessor Scheduling

To test the ability of our framework to support multi-
processor scheduling, we extended the test environment to
simulate a multiprocessor. Since a real multiprocessor ma-
chine was not available for this test, we emulated one by
time slicing the BSD process at a fine granularity among
several “virtual processors.” Each processor has its own



0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
um

be
r 

of
 o

cc
ur

re
nc

es

Mutex lock latency for real-time thread (clock ticks)

CPU donation on mutex contention
No CPU donation on mutex contention

Figure 9: Priority inheritance between schedulers

dispatcher and root scheduler thread, but the root sched-
uler threads cooperate as described in Section 4.3 to imple-
ment a single fixed-priority multiprocessor scheduler with
a shared ready queue for each priority level. We tested the
multiprocessor scheduler by implementing a simple paral-
lel database lookup application, in which multiple threads
repeatedly search for a randomly chosen item in a shared
binary tree, locking and unlocking the nodes of the tree as
they descend. We ran this application on 1, 2, 4, and 8-
processor configurations, with varying numbers of worker
threads; in each case, the behavior and performance was
exactly as would be expected from a comparable traditional
scheduler. Although this experiment demonstrates that the
framework extends to multiprocessors, we have not yet ex-
plored the effects of stacking multiprocessor scheduling
policies, nor have we implemented scheduler activations,
which we suspect will be critical to making CPU inheri-
tance scheduling work well in many practical multiproces-
sor situations.

5.7 Scheduling Overhead

While the preceding experiments demonstrate the ba-
sic properties and potential usefulness of our scheduling
framework, it remains to be seen whether it is efficient
enough in practice. In comparison to traditional multi-class
scheduling mechanisms, our framework introduces two ad-
ditional sources of overhead: first, the overhead caused by
the dispatcher itself while computing the thread to switch to
after a given event, and second, the overhead resulting from
additional context switches to and from scheduler threads.
The computation overhead caused by a given scheduling
algorithm is not an issue, since the same algorithms can be
used in each case.

5.7.1 Dispatcher Costs
To address the first issue, Table 1 shows the basic costs

of the dispatcher’s computation. These costs are depen-

Scheduling Hierarchy Depth Dispatch Time (�s)

Root scheduler only 8.0
2-level scheduling 11.2
3-level scheduling 14.0
4-level scheduling 16.2
8-level scheduling 24.4

Table 1: Basic dispatching costs.

dent on the depth of the scheduling hierarchy since the
dispatcher must often iterate through trees and linked lists
whose length is proportional to the depth of the hierarchy.

One concern raised by the dependence of dispatch time
on scheduling hierarchy depth is that, since in theory the
framework imposes no depth limit and the dispatcher it-
self is always effectively the “highest priority activity in
the system,” this creates a source of unbounded priority in-
version that would be unacceptable in hard real-time sys-
tems. However, in practice there is no reason a particular
dispatcher must support unlimited depth; the dispatcher in
a hard real-time system could limit the depth to four or eight
levels, which should be sufficient for all practical purposes
and still impose little computational overhead.

5.7.2 Context Switch Costs
The second type of overhead in our framework is the

cost of additional context switches to and from scheduler
threads. Unfortunately, the cost of a context switch varies
widely between different environments, from user-level
threads packages in which context switches are almost free,
to monolithic kernels in which context switches are several
orders of magnitude more expensive. An obvious inference
is that our framework is likely to be practical in some en-
vironments but not in others. Therefore, in order to gain a
meaningful idea of how expensive our framework is likely
to be in a given environment, we first measure the number
of additional context switches produced, which varies with
different applications and system loads but is not dependent
on thread and protection boundary-crossing costs.

Table 2 shows the context switch statistics observed for
each of several example applications: “Client/Server” is an
application in which a number of client threads repeatedly
invoke services on a smaller set of server threads; “Par-
allel Database” is the multiprocessor binary search appli-
cation described in Section 5.6; “Real-time” is the data
acquisition application from Section 5.5; finally, “Gen-
eral” is the test in Section 5.3 representing general-purpose
computing activity. The chart shows the number of times
the dispatcher switched to each thread over the course of
the test; user threads are shown separately from scheduler
threads. The last row in the table shows the percentage
of total context switches that were invocations of sched-
uler threads. This percentage is consistently near 50% re-
gardless of the application; this indicates that, on average,



Client/ Parallel Real- General
Server Database time

RM1 57 322 101
RM2 19 26
RM3 19
LS1 25 622 17
JAVA1 46
FIFO1 9
RR1 114 238 249 7
RR2 3 242 14
RR3 234
RR4 243
User invocations 492 957 1193 165

Root scheduler 262 956 1237 142
Rate monotonic 43 1 65
Lottery scheduler 30 57 3
Java thread scheduler 2
FIFO scheduler 1
Round-robin scheduler 8 8 8
Scheduler invocations 346 956 1303 218

Total context switches 838 1913 2496 383

Scheduler invoc. rate 41% 50% 52% 56%

Table 2: Switch Costs for Simple Applications.

approximately one additional scheduler thread invocation
can be expected in our framework for each ordinary context
switch. However, note that this chart is overly pessimistic
because the “scheduler invocations” figures include all
context switches to scheduler threads, not only those di-
rectly related to scheduling: in particular, it includes con-
text switches caused by explicit RPCs, which greatly inflate
the counts for the root scheduler in our system because our
root scheduler thread also provides message-based timers
and other facilities to the rest of the system.

5.7.3 Overhead in Kernel Environments

Although we have not yet implemented our framework
in a kernel environment, we can get some idea of how it
would perform in such an environment based on the re-
sults shown above and a knowledge of how real-world ap-
plications exercise the scheduler. Table 3 shows system-
wide statistics we gathered for several familiar applica-
tions running on FreeBSD 2.1.5, measured using BSD’s
vmstat command. gzip is a compute-intensive applica-
tion compressing an 8MB file; gcc is a build of a 20,000-
line program using the GNU C compiler; tar represents
an I/O-intensive application copying 8MB of source files;
and configure is an extremely I/O and fork-intensive
3000-line Unix shell script. All tests were performed on a
networked machine running in multi-user mode with a full
complement of daemons but no other user activity, repre-
sentative of a typical single-user workstation.

For three of the applications in Table 3, gzip (best-
case), gcc (average), and configure (worst-case), Fig-
ure 10 shows the overall application slowdown that would
result if each normal process-to-process context switch wasn microseconds more expensive, where n varies from 1

gzip gcc tar configure

Run time (sec) 26.4 35.3 9.6 26.0
Context switches/sec 11 32 81 202
Traps/sec 10 562 22 3470
System calls/sec 23 651 517 1807
Device interrupts/sec 427 509 3337 1055

Table 3: Scheduling-related statistics for test applications measured un-
der FreeBSD-2.1.5 on a 100MHz Pentium PC.

to 1000 (1 ms). This graph effectively shows the “toler-
ance” of a system to scheduling overhead in different sit-
uations: for example, supposing that typical users would
tolerate no more than about 2% slowdown for typical appli-
cations such as gcc, our framework (or any other schedul-
ing mechanism) would have to add no more than about
300�s to the process-to-process context switch time if im-
plemented in FreeBSD. Suppose FreeBSD was changed
so that all scheduling was done in user mode, adding ap-
proximately one additional context switch due to a sched-
uler invocation for each existing process-to-process con-
text switch. Based on context switch times we mea-
sured using the lmbench benchmark suite[24], which are
approximately 39�s on this machine, plus an additional
11�s to reflect the dispatcher’s cost (Section 5.7.1), the
overall overhead should still be negligible simply because
FreeBSD does not context switch all that often (see arrow
A on the graph). Furthermore, given BSD’s monolithic de-
sign, we would in practice expect at least the root sched-
uler to be implemented in the kernel and only application-
specific schedulers to be in user mode; this would reduce
the cost even further.

Of course, microkernels have much less tolerance for
scheduling overhead simply because they perform more
context switches. For example, in Mach, traps and sys-
tem calls can be expected to produce about two additional
context switches each; for an extremely “purist” microker-
nel such as L4, in which even device drivers are in user
mode, device interrupts would also add an additional two
context switches each. Figure 10 also shows a plot of
scheduling overhead tolerance for a hypothetical L4-like
microkernel, based on the numbers in Table 3 except with
traps, system calls, and interrupts each counting as two ad-
ditional context switches. For example, to keep the over-
head under 2% for gcc in this system, the additional per-
context switch cost must be no more than about 6�s (see
arrow B), which would be difficult even with L4’s phenom-
enal 3.2�s round-trip RPC time[20]. On the other hand,
these “back of the envelope” calculations are pessimistic
in several ways: first, an additional scheduler invocation
should not be needed for every normal context switch, as
explained in Section 5.7.2; second, in a microkernel that
dispatches hardware interrupts to threads, we would expect
at least a minimal fixed-priority root scheduler to be im-
plemented in the kernel so that device driver threads can
be scheduled without the help of user-level schedulers; and



0

2

4

6

8

10

1 10 100 1000

O
ve

ra
ll 

sl
ow

do
w

n 
(p

er
ce

nt
)

Additional overhead per context switch (microsec)

A

B

Microkernel:configure (13000 csw/s)
Microkernel:gcc (3500 csw/s)
Microkernel:gzip (930 csw/s)

FreeBSD:configure (202 csw/s)
FreeBSD:gcc (32 csw/s)
FreeBSD:gzip (11 csw/s)

Figure 10: Overall application slowdown as a function of additional
overhead per process-to-process context switch. In BSD, only switches
between Unix processes count; in Mach, traps and system calls count as
RPCs (two context switches each); in L4, device interrupts also count as
RPCs.

third, our prototype dispatcher is extremely unoptimized in
terms of both its algorithm (it still causes many avoidable
context switches) and its implementation (it takes much
longer than necessary to compute the next thread to run).
There should certainly be many points in the design space
at which CPU inheritance scheduling is practical even for
microkernels; we are currently working on a second proto-
type of the framework in our Fluke microkernel[10, 11] in
order to evaluate the framework further in this light.

5.8 Code Complexity

As a final useful metric of the practicality of our frame-
work, we measured our prototype’s code size and complex-
ity in terms of both raw line count and lines containing
semicolons. The entire dispatcher is contained in a sin-
gle well-commented file of 550 (raw) or 158 (semicolons)
lines. Each of our example schedulers is around 200/100
lines long; of course, production-quality schedulers that
handle processor affinity, scheduler activations, dynamic
priority adjustments, and so on, would probably be signif-
icantly bigger.

6 Conclusion

In this paper we have presented a novel processor
scheduling framework in which threads are scheduled by
other threads. Widely different scheduling policies can co-
exist in a single system, providing modular, hierarchical
control over CPU usage. Applications as well as the OS
can implement customized local scheduling policies, and
CPU resources consumed are accounted for and attributed
accurately. The framework also cleanly addresses priority
inversion by providinga generalized form of priority inher-
itance that automatically works within and among multiple

diverse scheduling policies. CPU inheritance scheduling
extends naturally to multiprocessors, and supports proces-
sor management techniques such as processor affinity and
scheduler activations. We have shown that this flexibility
can be provided with negligible overhead in environments
in which context switches are fast, and that the framework
should be practical even in some kernel environments in
which context switches are more expensive.

Acknowledgements

For their many thoughtful and detailed comments on ear-
lier drafts we thank the anonymous reviewers and Kevin
Jeffay, our shepherd, as well as the members of the Flux
project. We are especially grateful to Jay Lepreau for his
support and advice, to Kevin Van Maren for considerable
help on the results and bibliography, and to Mike Hibler
for spending an entire day reviving Bryan’s machine after
a complete disk failure on Friday the 13th just before the
final paper deadline.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A
New Kernel Foundation for UNIX Development.
In Proc. of the Summer 1986 USENIX Conf., pages
93–112, June 1986.

[2] A. Adl-Tabatabai, G. Langdale, S. Lucco, and
R. Wahbe. Efficient and Language-Independent
Mobile Programs. In Proc. ACM SIGPLAN Symp. on
Programming Language Design and Implementation,
pages 127–136, May 1996.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler Activations: Effective Ker-
nel Support for the User-Level Management of Paral-
lelism. ACM Trans. Comput. Syst., 10(1):53–79, Feb.
1992.

[4] D. L. Black. Scheduling and Resource Manage-
ment Techniques for Multiprocessors. PhD thesis,
Carnegie Mellon University, July 1990.

[5] A. C. Bomberger and N. Hardy. The KeyKOS Nanok-
ernel Architecture. In Proc. of the USENIX Work-
shop on Micro-kernels and Other Kernel Architec-
tures, pages 95–112, Seattle, WA, Apr. 1992.

[6] O.-J. Dahl. Hierarchical Program Structures. Struc-
tured Programming, pages 175–220, 1972.

[7] S. Davari and L. Sha. Sources of Unbounded Priority
Inversions in Real-time Systems and a Comparative
Study of Possible Solutions. ACM Operating Systems
Review, 23(2):110–120, Apr. 1992.



[8] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In Proc.
of the 15th ACM Symp. on Operating Systems Prin-
ciples, pages 251–266, Copper Mountain, CO, Dec.
1995.

[9] R. B. Essick. An Event-based Fair Share Scheduler.
In Proc. of the Winter 1990 USENIX Conf., pages
147–161, Washington, D.C., Jan. 1990.

[10] B. Ford, M. Hibler, and Flux Project Members.
Fluke: Flexible �-kernel Environment (draft docu-
ments). University of Utah. Postscript and HTML
available under http://www.cs.utah.edu/projects/-
flux/fluke/html/, 1996.

[11] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels Meet Recursive Vir-
tual Machines. In Proc. of the Second Symp. on Op-
erating Systems Design and Implementation, Seattle,
WA, Oct. 1996. USENIX Assoc.

[12] D. B. Golub. Adding Real-Time Scheduling to the
Mach Kernel. Master’s thesis, University of Pitts-
burg, 1993.

[13] J. Gosling and H. McGilton. The Java Language En-
vironment: A White Paper. Technical report, Sun Mi-
crosystems Computer Company, 1996. Available as
http://java.sun.com/doc/language environment/.

[14] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU
Scheduler For Multimedia Operations. In Proc. of the
Second Symp. on Operating Systems Design and Im-
plementation, Seattle, WA, Oct. 1996. USENIX As-
soc.

[15] N. Hardy. The KeyKos Architecture. Operating Sys-
tems Review, Sept. 1985.

[16] G. J. Henry. The Fair Share Scheduler. AT&T Bell
Laboratories Technical Journal, 63(8), Oct. 1984.

[17] Institute of Electrical and Electronics, Inc. IEEE
Standard for InformationTechnology — Portable Op-
erating System Interface (POSIX) — Part 1: System
Application Programming Interface (API) — Amend-
ment 1: Realtime Extension [C Language], 1994. Std
1003.1b-1993.

[18] E. D. Jensen. A Benefit Accrual Model of Real-Time.
In Proc. of the 10th IFAC Workshop on Distributed
Computer Control Systems, Sept. 1991.

[19] J. Kay and P. Lauder. A Fair Share Scheduler. Com-
munications of the ACM, 31(1), Jan. 1988.

[20] J. Liedtke. On Micro-Kernel Construction. In Proc.
of the 15th ACM Symp. on Operating Systems Prin-
ciples, pages 237–250, Copper Mountain, CO, Dec.
1995.

[21] J. Liedtke. A Short Note on Cheap Fine-grained
Time Measurement. ACM Operating Systems Re-
view, 30(2):92–94, Apr. 1996.

[22] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environ-
ment. Journal of the ACM, 20(1):46–61, Jan. 1973.

[23] J. M. McKinney. A survey of analytical time-sharing
models. ComputingSurveys, page 105”116, jun 1969.

[24] L. McVoy and C. Staelin. lmbench: Portable Tools
for Performance Analysis. In Proc. of 1996 USENIX
Conf., Jan. 1996.

[25] Microsoft Corporation. Win32 Programmer’s Refer-
ence, 1993. 999 pp.

[26] L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity Inheritance Protocols: An Approach to Real-time
Synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[27] M. S. Squillante and E. D. Lazowska. Using
Processor-Cache Affinity Information in Shared-
Memory Multiprocessor Scheduling. IEEE Trans-
actions on Parallel and Distributed Systems,
4(2):131–143, 1993.

[28] J. Torrellas, A. Tucker, and A. Gupta. Evaluat-
ing the Performance of Cache-Affinity Scheduling in
Shared-Memory Multiprocessors. Journal of Paral-
lel and Distributed Computing, 24:139–151, 1995.

[29] R. Vaswani and J. Zahorjan. The Implications of
Cache Affinity on Processor Scheduling for Multipro-
grammed, Shared Memory Multiprocessors. In Proc.
of the 13th ACM Symp. on Operating Systems Princi-
ples, pages 26–40, Oct. 1991.

[30] C. A. Waldspurger. Lottery and Stride Scheduling:
Flexible Proportional-Share Resource Management.
PhD thesis, Massachusetts Institute of Technology,
Sept. 1995.

[31] C. A. Waldspurger and W. E. Weihl. Lottery Schedul-
ing: Flexible Proportional-Share Resource Manage-
ment. In Proc. of the First Symp. on Operating Sys-
tems Design and Implementation, pages 1–11, Mon-
terey, CA, Nov. 1994. USENIX Assoc.

[32] C. A. Waldspurger and W. E. Weihl. Stride Schedul-
ing: Deterministic Proportional-Share Resource
Management. Technical Report MIT/LCS/TM-528,
MIT Laboratory for Computer Science, June 1995.


